A Kripkean Semantics for Dynamic Logic
Programming

Jan Sefranek

Institute of Informatics, Comenius University
811 03 Bratislava, Slovakia
e-mail: sefranek@fmph.uniba.sk

Keywords: knowledge representation and reasoning, nonmonotonic reason-
ing, knowledge evolution, updates, dynamic logic programming, stable model,
Kripke structure, dynamic Kripke structure

Abstract. The main goal of the paper is to propose a tool for a semantic
specification of program updates (in the context of dynamic logic pro-
gramming paradigm). A notion of Kripke structure Kp associated with
a generalized logic program P is introduced. It is shown that some paths
in Kp specify stable models of P and vice versa, to each stable model of
P corresponds a path in £p. An operation on Kripke structures is de-
fined: for Kripke structures Kp and Ky associated with P (the original
program) and U (the updating program), respectively, a Kripke struc-
ture Kpgu is constructed. Kpgu specifies (in a reasonable sense) a set
of updates of P by U. There is a variety of possibilities for a selection of
an updated program.

1 Introduction

Knowledge evolution is a problem of crucial importance from the non-monotonic
reasoning point of view. In fact, the non-monotony of reasoning is only a symp-
tom of the evolution of knowledge.!

A formalization of some essential features of knowledge evolution was pro-
posed recently in [3], see also the predecessors [14, 16, 2,10, 11]. Knowledge bases
(KB) are represented in [3] by generalized logic programs which allow default
negation also in heads of the rules. As a consequence, both insertions and dele-
tions may be specified by the rules of a program. The basic situation is as follows.
A program P (the initial program) is given. P is updated by another program
U (the updating program). A new program P ¢ U (the updated program) is the
result of the update. This situation is generalized in [3] to sequences of program
updates P @ Uy @ - - - @ U,. The paradigm of dynamic logic programming pro-
vides an appropriate tool for a representation of dynamically changing knowledge
(dynamic knowledge bases).

L« . non-monotonic behaviour ... is a symptom, rather than the essence of non-

standard inference” according to [20].

The approach of [3] is based on this basic decision: an update KB' of one
knowledge base KB by another knowledge base U should not just depend on
the semantics of the knowledge bases KB and U but it should also depend
on their syntax (the dependencies among literals are encoded in the syntax).
The decision is implemented via a syntactic transformation. First, the set of
propositional letters is extended. For each propositional letter a quintuple of
new propositional letters is introduced. Second, the updated program P ¢ U
contains for each original clause from P and U a modified clause in the extended
language. P & U also contains for each original propositional letter six new
clauses.

The main goal of this paper is to investigate semantic foundations of dynamic
logic programming paradigm. For each generalized logic program P an associated
Kripke structure Kp is defined. Dependencies among literals are encoded in
the accessibility relation of the Kripke structure. We can specify updated logic
programs using a new Kripke structure Kpgrr. Kpgr is the result of an operation
on Kripke structures £p and Ky, associated with an original program P and an
updating program U, respectively. There is no need for an extended language
and for some new types of clauses when the updated programs are created.

Updated programs are not specified by the operation in a unique way. It
is not a drawback, it is a basic general property of updates. In this paper we
propose some simple, “cautious” approaches to the updated program selection.
In a next paper we investigate the problem more thoroughly. The approach of
[3] will be discussed from the viewpoint of possible-world semantics in a more
detail in the forthcoming paper, too. The main goals of this paper are:

— the introduction of the Kripkean semantics,

— a demonstration that the semantics is useful for stable models identification
(computation),

— and that there is an operation on Kripke structures which can be used as a
basis for a specification of updates of generalized logic programs.

The paper is structured as follows. The problem is introduced, motivated,
and the preliminary technicalities are sketched in the Sections 2 — 4. The kernel
of the paper: Section 5 is devoted to Kripke structures associated with given gen-
eralized logic programs. It is proved that stable models are encoded in Kripke
structures (a method of stable models computation is implicit in this encod-
ing). A construction of the Kripke structure Kpgy is introduced in Section 6.
The construction is defined over given Kripke structures Ky and Kp associated
with programs U and P, respectively. Finally, Kpgu is presented as a tool for
a semantic specification of an update of P by U in Section 7 . Some results
concerning the correctness of the specification are proved.

2 Interpretation updates and dynamic logic programs

The so called interpretation update approach emphasizes the role of a semantics
in updating: A KB' is considered to be an update of KB by U if the set of

models of KB’ coincides with the set of updated models of KB. We may express
it as Mod(KB') = Update;;(Mod(KB)), where Mod(X) is the set of (relevant)?
models of X and Updatey (M) is an update of a set M of models. The update
is determined by the program U, more precisely by a set of (relevant) models of
U.

The goal (and a strength) of the interpretation update is an abstraction from
the superficial syntactic features when specifying updates. Unfortunately, it is
impossible to respect dependencies among literals, to account for justifications,
using the interpretation update (and using the traditional AGM-postulates, [1,
8], too, see [21]). This is the reason why the interpretation update is refused in
[10], and then also in [3]. The fact that Updatey;(KB) should not just depend
on the interpretations of KB and U is illustrated by a simple example:

Example 1 ([3]) Let P be a program: innocent < not found_guilty.

Consider the stable model semantics [9] as the representation of the program
meaning. The meaning of P is Mod(P) = {{innocent}}, the only stable model
of Pis S = {innocent}.

If P is updated by U = {found_guilty <}, then according to the interpreta-
tion update approach we should insert found_guilty into S, i.e.

Update(Mod(P)) = {{innocent, found_guilty}}.

Of course, {innocent, found_guilty} is not the intended semantic characteri-
zation of the update of P by U. O

Therefore, it is decided to base the updated program P & U on a syntactic
transformation, see [3].

3 Motivation

Our next goal is to propose a new semantics of a generalized logic program. An
important feature of the semantics should be an ability to handle and to record
the dependencies among literals, the justifications.

Example 2 (Continuation of the Example 1) In a sense, innocent is justi-
fied (in P) by not found_guilty. This justification is uprooted by the updating
program U. It seems that dependencies, justifications, arguments are important
from the semantic point of view. We propose a Kripkean semantics in order
to provide a semantic characterization of the dependencies, justifications, argu-
ments. The justifications are represented (encoded) by the accessibility relation
(between interpretations).

The graphs GP and GU of the Figure 1 visualize the relevant parts of the
Kripke structures associated with programs P and U, respectively. The nodes of
the graphs (the possible worlds) represent (partial) interpretations. An accessi-
bility relation is defined on the interpretations as follows. A partial interpretation

2 For example, the relevant models may be the stable models.

M is accessible from another partial interpretation M’, if the body of a rule of
the given program is satisfied in M’ and both the body and the head of the rule
are satisfied in M (M is justified by M').

The graph GC provides a semantic characterization of the update of P by
U. It is constructed over the graph GU. Some parts of the graph GP may be —
in general — connected to GU, but in our example it is impossible: no edge of
GP can be appended to u1 (no edge of GP is compatible with found_guilty).

Therefore, GU = GC and the stable model of the updated program should
be the same as the stable model of the updating program. Of course, innocent
is not true in GC. O

ul={found_guilty} ~—— u0={} GU = GC

pl={not found_guilty, innocent } «——— p0={not found_guilty}

GP

Fig.1. The node p0 represents the interpretation {not found_guilty}, pl =
{not found_guilty, innocent}, u0 = O, ul = {found_guilty}. The edges (p0,pl) and
(u0,ul) represent the dependencies among literals (the second member of a pair is
justified by the first member). The update is determined by U, therefore the graph
associated with the update (GC) is constructed over the graph associated with the
program U (GU). Some parts of the graph associated with P (GP) may be — in gen-
eral — connected to GU, but in our case it is impossible: no edge of GP can be put
before u0, similarly, no edge can be appended to ul (no edge of GP is compatible with
found_guilty).

The example shows that there is a possibility of an adequate semantic treat-
ment of dependencies among literals. Moreover, the semantics enables to identify
and to compute stable models and it enables also to connect relevant parts of one
Kripke structure to another. This “connectivity” serves as a basis for updates
specification in terms of a purely semantic construction.

We are going to the details.

4 Preliminaries

Consider a finite set of propositional symbols L. The set L,,; is defined as
LU{not A: A€ L}. A member of L,,; is called literal. We will denote the set
{not A: A € L} by D (defaults, assumptions).

A generalized clause is a formula ¢ of the form L < Ly, ..., Ly, where L, L;
are literals. We will denote L also by head(c) and the conjunction L, ..., Ly by
body(c). A set of generalized clauses is called a generalized logic program. In the
following, whenever we use “clause” or “program” we mean “generalized clause”
and “generalized logic program”, respectively.

For each A € £, A and not A are called conflicting literals. A set of literals is
consistent, if it does not contain a pair of conflicting literals. Partial interpreta-
tion (of a language L,0¢) is a consistent subset of L,0¢. Total interpretation is a
partial interpretation Z such that for each A € L either A € 7 or not A € 7. We
are interested in sets of propositional symbols determined by programs. By £F
we denote the set of all propositional symbols used in the program P. A partial
interpretation of a program P is a consistent subset of LF ,. The set of all par-
tial interpretations of P we denote by Intp. Each inconsistent set of literals we
denote by w .

A literal L is satisfied in a partial interpretation Z if L € Z. A clause L +
Lq,..., Ly is satisfied in a partial interpretation Z if L is satisfied in Z whenever
each L; is satisfied in Z. A partial interpretation Z is a model of a program P
if each clause ¢ € P is satisfied in Z. Notice that propositional generalized logic
programs can be treated as Horn theories: each literal not A can be considered
as a new propositional symbol (if not A € L it has to be renamed). The least
model of the Horn theory H we denote by Least(H).

Definition 3 (Stable model, [3]) Let P be a generalized logic program and
S be an interpretation of P. It is said that S is a stable model of P iff S =
Least(PUS™), where S~ = {not A: not Ae S}. O

We will visualize Kripke structures as graphs. If e is an edge (w;, w;y1) of a graph
G, the node w; is called the source of e and w;y; the target of e. A sequence o
of edges (wo,w1), (w1, ws), ..., (wy_1,wy,) is called a path, wy we denote also by

begin(o) and w,, by end (o).

5 Kripke structure associated with a program

A notion of Kripke structure associated with a program is defined in this Section.
Moreover, it is shown that some distinguished paths in the defined structure
represent stable models of logic programs and, conversely, for each stable model
there is a distinguished path in the Kripke structure.

The basic idea of our approach was illustrated in the Example 2. A more
complicated example is presented below.

Example 4 ([17]) Let P be

p < not q,r
q < notp
r < not s

S ¢ not p.

A fragment of the Kp is depicted in the Figure 2. The nodes are partial inter-
pretations. We distinguish two kinds of edges — p1, and ps.

Consider (wl,w2), an example of an p;-edge, where wl = {not p} and wy =
{not p,q, s}. There are two clauses with the body satisfied in wl. Consequences
of these clauses are appended to w1, the possible world w2 is the result of this
operation.

Finally, a motivation for ps. There is no total interpretation u such that
(wa,u) € p1, i.e. no clause is applicable to the partial interpretation wy =
{not p,q,s} (except of ¢ + not p and s < not p, but they do not change
the possible world w2). It means, that P does not enable to justify the truth
of r (if we suppose w2). Therefore, we may assume by default that r is not
true (w.r.t. P and w2). The py-edge from w2 to w3 represents a completion of
{not p,q, s} by not r.

O

wl={not p} wd={r, not q} w7={not s, not q}
1
1
1

w2={not p, q, s} ~ wH={r. not q, p}

2 2

1
w6={r, not q, p, not s} w8=

w3={not p, q, s, not r} {not s, not q, r}

Fig. 2. A fragment of p. An edge labeled by i is a p;-edge.

Let us summarize: A pi-edge corresponds to an application of a clause to
a partial interpretation. A clause c¢ is applicable to a partial interpretation w
if w |= body(c). In general, for each ¢ € P: if w is a model of body(c), then
head(c) € w' for some w' such that w C w' and (w,w’) € p1. Intuitively, (w,w")
represents a step in a computation bottom-up.

If an atom A is not computed (bottom-up), we assume that not A holds.
The relation py represents a completion (by default negations) of partial inter-
pretations that cannot be changed by some clauses of P.

Now we are ready to define a Kripke structure Kp associated with P.

Definition 5 Let P be a program. A Kripke structure Kp associated with P is
a pair (W, p), where:

— W = Intp U {w,}, W is called the set of possible worlds, Intp is the set
of all partial interpretations of P, w, is the representative of the set of all
inconsistent sets of literals,

— p is a binary relation on W x W, it is called the accessibility relation and it
is composed of two relations: p = p1 U p2, where

1. the accessibility relation p; contains the set of all pairs (w,w’) such that
w' = wU{head(c;) : i = 1,...,k}, where ¢1,...,cx are (not necessary
all) clauses from P such that w |= body(c;),

2. if w is not a total interpretation and for no u # w there is an edge
(w,u) € p1, then (w,w') € pa, where w' = wU {not A: A ¢ w}.

Of course, Kp may be viewed as a graph.

Definition 6 p-path is a sequence o of edges (wp, w1), (w1, wa),. .., (Wp_1,wy)
in £p such that each (w;,w;t1) € p.

We say that this o is rooted in wq (also wg-rooted). If there is no p-edge
(wy,w) in Kp such that w # w,, we say that ¢ is terminated in wy, (also: wy, is
a terminal node of Kp). O

Sometimes we denote paths by the shorthand (wq, w1, ws, ..., wp—1,wy,). Simi-
larly, a p;-path could be defined.

We have seen that Kripke structures are appropriate for recording justifica-
tions (of interpretations by another interpretations). The justifications have to
be non-circular. There are two kinds of basic assumptions — facts (with empty
interpretation as the justification, edges to facts are (-rooted) and default nega-
tions (subsets of D), called non-monotonic assumptions in TMS [6]: if there is no
evidence against, we assume not A (where A is an atom). Therefore, the Kripke
structure Kp associated with a program P enables to identify (and to compute)
the stable models of P.

Example 7 Let us return to the Example 4 (and to the Figure 2)

There is no fact in P, hence there is no (-rooted path in Kp. As a conse-
quence, relevant paths are only those rooted in some w such that (§ # w C D
(only defaults can be assumed). There is a {not s, not g}-rooted p-path ter-
minated in a stable model {not s,r,not ¢,p} and a {not p}-rooted (simi-
larly, also a {not p, not r}-rooted) p-path terminated in another stable model
{p, not ¢, not s,r}. O

Now we are ready to state conditions for stable models in terms of nodes and
paths in Kp.

Definition 8 Let P be a program, ¢ be an acyclic p-path (wq, w1, ..., w,) from
Kp. We say that o is correctly rooted, if

— either wg =0
—orf#wy CD. O

Theorem 9 Let P be a program, Kp be the Kripke structure associated with P,
o = (wg,wr), (w1, w32), ..., (Wph—1,wn) be an acyclic p-path in Kp terminated in
a total interpretation w,.

If o is correctly rooted, then w, is a stable model of P.

Proof Sketch:
Let P be a generalized logic program. Let P’ be P U {not A <: not A € w,, }.
Consider P’ as a definite program (each literal not A is a new propositional
letter) with integrity constraints of the form < A, not A for each propositional
symbol A € L.

According to [3], see also the Definition 3: w, is a stable model of P iff
wy, = Least(P Uw,,), where w,, = {not A : not A € wy}.

We assume that o = (wg,wy,...,w,_1,wy,) is correctly rooted and w,, is
a total interpretation. If (w,_1,w,) € p; it is straightforward to show that
wy, = Least(P U w,,). Otherwise, notice that w* = we U (w, \ wy—1) C w, and
(w*, (wy Uw*), ..., (wp—1 Uw*)) is a correctly rooted acyclic p-path terminated
in wy,. It means, Least(P') = w,. Clearly, integrity constrains are satisfied in
wy,. Finally, Least(P') = Least(P Uw,,). O

Theorem 10 Let S be a stable model of a generalized logic program P and Kp
be a Kripke structure associated with P.

There is a correctly rooted and acyclic p-path o = (wq, ..., w,,S) in Kp
terminated in S.

Proof Sketch:
We again use S = Least(P U S~). We can construct a correctly rooted (in S™)
p-path terminated in S both if S~ =0 and if S~ # (. O

Fact 11 Let P, Kp be as in the Theorem 10. If (D,w,) & p1, then D is the
only stable model of P.

Proof: First, D is a stable model of P: Let D' # @ be a proper subset of D.
Then (D', D) is a correctly rooted p-path terminated in the total interpretation
D.

Let (wg, - .., wy) be a correctly rooted p-path terminated in a total interpre-
tation w, # D. Hence, A € w, for at least one atom A. Of course, there is an
atom A, arule A < Ly,..., L, and a correctly rooted p-path (ug, ..., um,) such
that u,, = w, and ug = Lq,..., Ly, where ug C D. Therefore, D = Ly,..., Ly

))

and (D,w,) € p1. It means, D is the only stable model of P. O

Fact 12 Let P and Kp be as in the Theorem 10. If o = (wo,w1,...,wy,) is a
p-path in Kp, terminated in w, # w,, then w, is a model of P.
If M is a model of P, then there is a p-path in Kp terminated in M.

Proof: If ¢ € P and w; |= body(c) for some w;, then head(c) € w;y1.

M is not an isolated node: If M = D, we can use the edge (D', D) from the
proof of the Fact 11. If M # D and w = M \ D, then there is a path ¢ in Kp
such that begin(o) = w and end(c) = M.

M is a terminal node: (M,w,) & p1, otherwise there is a clause ¢ € P which
is not true in M. O

6 Updated Kripke structures

We are going to construct a Kripke structure Kpgy over two Kripke structures,
over Kp (let us recall that it specifies the semantics of an original program P)
and over Ky (specifying the semantics of an updating program U). We intend
to use the structure Kpgy as a semantic specification of an updated program.

First we motivate definitions of some notions needed for the construction of
Kpgu. The concept called continuation node is the most important one.

We assume that the nodes of Kpgp are the (partial) interpretations of the
language £PVV.

Example 13 ([3]) Let P = {s « not t;a « t;t <} be given. We assume
that P is updated by U = {not t + p;p <}. The relevant parts of Lp and
Ky are illustrated on the Figure 3. We construct Kpgy over Ky, the update
is dominated by Ky. If P can consistently add something to U, it should be
accepted. Hence, some paths from Kp may be connected to Ky .

Consider possible worlds from Kp: wl = 0, w2 = {t}, w3 = {¢,a}, wd =
{t,a,not s}, w5 = {not t}, w6 = {not t,s}. Similarly, the relevant possible
worlds from Ky are: ul = 0, u2 = {p}, u3 = {p, not t}.

An important decision should be made: Which paths of XCp may be connected
to which nodes of Ky?

Above all, the nodes of Ky which terminate p;-paths are the reasonable
continuation nodes. If we connect a path of p to an intermediate node of a
p1-path of Ky, then some information of U could be lost. On the other hand,
the acceptance of default assumptions should be postponed until all p;-paths of
Kpgu are constructed.

Let us summarize, we have a first example of continuation nodes — the ter-
minal nodes of pi-paths.

Now we proceed to the connection of relevant paths to the continuation
nodes. A path o of p may be connected to a continuation node w of Ky, if
begin (o) is compatible — in a sense — with w.

In our simple example, the only relevant continuation node is u3. If we con-
nect the path (w1, w2, w3, w4) to the continuation node u3 = {p, not t}, the first
edge (wl,w2) leads to w, — the node w2 = {¢} contradicts the node u3.

On the contrary, the path (w5, w6) may be connected successfully to the node
us. The node w5 is compatible with the node u3: w5 C u3, it means that every
literal satisfied in u3 is satisfied in w5, too. Moreover, w6 and u3 are consistent.

Therefore, the path of Kpgy could be o = (ul,u2,ud, w,w'), where w =
u3 U w6 (notice that u3 = u3 U w5) and w' = w U {not a}. The edge (uz, w) we
obtain by connecting (ws,wg) to u3. The last edge, (w,w') is a py-edge. This
completion is made w.r.t. the language £Z5V. The relevant part of Kpaerr is on
the Figure 3.

The path o is correctly rooted and it is terminated by the total interpretation
w'. We can consider a correctly rooted path from Kpgpy which terminates in a
total interpretation to be a basis for a semantic specification of updated programs
Pal.

By the way, w' = {p, not t, s, not a} is the only stable model (modulo irrele-
vant literals) of the updated program P @& U, as defined in [3]. O

u2 u3 w={p, not t, s}
2 Updated

ul

w'={p, not, s, not a}

ulz{}1—> u2:{p}1—> u3={p, not t} U

1
wH={not t} ——— w6={not t, s}

1 1
wl={} — w2={t} ——— w3={t, a}
2
wd={t, a, not s}

Fig. 3. The relevant parts of p and Ky from the Example 13. The edges are labeled
as in the Figure 2. The edge (w5, w6) from Kp is connected to the path (ul,u2, u3)
from Ky and the path is completed by the edge (w,w'). The resulting path from
Kpou is (ul, u2), (u2,u3), (ud,w), (w,w"), where w = u3 Uw6 and w' = wU {not a} =
{p, not t, s, not a}.

The example motivates our first decision about continuation nodes: Each ter-
minal node of a p;-path from Ky is a continuation node. Let w be a continuation
node. We may connect a path ¢ from Kp to w, if all formulae satisfied in w are
satisfied also in begin(o) and if a consistency criterion is satisfied. The node w
can be considered as a justification of the connected path.

Now we extend our idea of continuation nodes: It is acceptable to connect
some paths of Kp before some nodes of K: Possible continuation nodes are also
wo = P and) # wo C D, if there is in Ky no pi-path rooted in wy.

We are now ready to present a series of definitions.

Definition 14 Let Ky be a Kripke structure associated with an update program
U.
Continuation nodes of Ky are

(i) all nodes terminated a p;-path
(i) @ or w such that) # w C D, if they are not the source of a pi-edge.

a

Definition 15 The path ¢ = (wo, w1, ..., w,) from Kp may be connected to a
node w from Ky iff wg C w and w U wy is consistent. O

Definition 16 Let 0 = (ug,...,u,) be a p-path and w be a node.

Then connect o to w is a partial operation as follows: if ¢ may be connected
to w, then (w,u; Uw),...,(up—1 Uw,u, Uw) is a p-path. If for some i > 1
holds that w U u; is inconsistent, it is replaced by w, and the rest of the path is
removed. O

Definition 17 Let p and Ky be the Kripke structures associated with non-
empty programs P and U, respectively.
We construct Kpgp as follows:

1. each pi-edge from Ky is an pr-edge of Kpgrs,

2. for each continuation node w from Ky and each pi-path o = (ug, uy, ..., un)
from Kp: connect o to w,

3. introduce new po-edges whenever it is possible.

a

7 Updated programs specification

In this Section we present some useful properties of K pgy and then we sketch
some simple methods of updated programs construction.

7.1 Good worlds and the stability condition

First, we introduce a definition in order to simplify the description of Kpgy.
By analogy to the results of Section 5, correctly rooted p-paths terminated in a
total interpretation from Kpgy deserve a special interest. We will use them as
a basis for a specification of P & U.

Definition 18 (Good worlds) Let a Kripke structure Xpgu be given. Let o
be a correctly rooted p-path from Kpgy terminated in a total interpretation w.
We say that o is a distinguished p-path and w is a good world. O

Now it can be said that we will use distinguished p-paths and good worlds as a
tool for a specification of P & U. We accept a cautious strategy in this paper: for
each distinguished p-path ¢ (and the corresponding good world w) from Kpgy
we are aiming at specifying a program IT such that w is the only stable model
of IT. Tt means, we consider Kpgy as the specification of a variety of updates.

Our next goal is to define a criterion of a reasonable update of P by U.
Updated programs specified by Kpgy should satisfy the criterion. The criterion
is called the stability condition. It provides a natural characterization of what
to accept (or what to reject) from the original program P, if a model M of the
updating program U is given. The model M represents an (alternative) belief
set dominating the update.

The results of this Subsection — Fact 23, Theorem 24, and Consequence 26
show that

— stability condition and good worlds agree, in a sense,

— both concepts (stability condition, good worlds) enable to specify updated
programs compatible with U,

— good worlds are stable models of the updated programs.

A crucial issue is what to accept and what to reject from the original program
P, if the updating program U is given. Next example motivates why sometimes
the defaults from U override facts from P.

Example 19 Let P be {a ;b + a} and U be {not b + c;c + not a;a +
not c}.

U specifies an intuitively acceptable update of P: a new propositional symbol
¢ is introduced, the meaning of ¢ is the opposite to the meaning of a, and ¢ is
a condition for not b (while @ — according to P — is a condition for b). Notice
that no path of Ky is rooted in () and the stable models of U are based on some
default assumptions.

The relevant parts of Kp, Ky, and Kpgy are illustrated on the Figure 4. The
continuation nodes of Ky are w2 and w4. The p-path (u0, ul,u2) from Kp may
not be connected to w2, the edge (u0,ul) leads immediately to the w; (w2Uul
is not consistent). If we connect the path to the node w4 we get w = {not ¢, a, b}
(a redundant cycle (w4, w4) = (w4, wd U ul) is removed).

Let us summarize — we have two p-paths terminated in a total interpretation
in Kpgy: (w3, w4, w) and (w0, wl,w2). The total interpretation w respects the
facts from P, but the total interpretation w2 does not respect them — it prefers
the default assumptions of U.

Our attitude here is a cautious one: we allow both interpretations to deter-
mine an updated program P ¢ U. O

The example 19 shows that sometimes it is justified to reject some facts of
P. Let us suppose that a literal L holds in a stable model S of the updating
program U and L' + is a fact of the original program P, where L and L' are
conflicting literals. The fact is rejected, if we accept the belief set S.

1 1 Updated

w3 — w4 ——— w={not ¢, a, b}

1 1

w) — wl —— w2

U

1 2
w3={not ¢} —— wd={not ¢, a}——— wbH={not ¢, a, not b}

w0={not a} —— wl={not a, ¢} —— w2={not a, c, not b}

W0={}— - wi={a} — w2={a, b} b

Fig. 4. A fragment of graphs from the Example 19. The relevant parts of Kpgy are
the same as of Ky with the only exception — the node w = {not ¢, a,b} instead of wh
and (w4, w) € p1.

Definition 20 Let M be an interpretation of an updating program U, and L, L’
be conflicting literals. Let P be an original program.

— Rejected(M) = {c € P: (3¢ € U) ((head(c), head(c") are conflicting literals
and M = body(c)}U{(L +) e P: L' € M}

— Residue(M) =U U (P \ Rejected(M))

— Defaults(M) = {not A : (Ve¢ € Residue(M)) (head(c) = A = M £
body(c))}, where A is an atom.

d

Our definition of rejected clauses slightly differs from that of [3]. The basic
difference is that in [3] facts from P are not rejected when they are in conflict
with a stable model S.? Similarly, our definition of defaults is different: we define
defaults with respect to the Residue(M), while in [3] they are defined w.r.t. PUU.

Definition 21 (Stability condition) Let programs P,U be given. Let w be
a possible world from Kpgy. We say that w satisfies the stability condition, if
holds

w = Least(Residue(w) U Defaults(w)).0

® From this point of view, the approach of [10, 11] is similar to our approach. On the
other hand, Rejected(M) may be defined in a distinct way also in our setting. A
more detailed comparison and an analysis of some possibilities will be presented in
the forthcoming paper.

Next example shows that some good worlds which do not satisfy the stability
condition as defined in [3]* satisfy our Definition 21. Moreover, each good world
satisfies the condition (see Theorem 24 below).

Example 22 Let us recall the Example 19. One of the distinguished paths
terminates in the good world w2 = {not a, ¢, not b}. Consider a modification of
Residue(w?2) and Defaults(w2). Let I C P be a consistent set of clauses such
that (a <) € II. Let A be {not A: VYc € (IIUU) (head(c) = A = w2 [
body(c))}. Then w2 # Least(II UU U A), because of not A € Least(ITUU U A).
It means, the good world w2 does not satisfy the stability condition for the
modified Residue(w2) and Defaults(w?2).

Notice that Residue(w2) as defined in [3] contains a .

According to our Definition 20: Rejected(w2) = P, Residue(w2) = U, and
Defaults(w2) = {not a, not b}, hence Least(Residue(w2) U Defaults(w2)) = w?2.
O

We proceed to the results of this Subsection. The stability condition provides
an important criterion: Each possible world w satisfying this condition respect
the information of the updating program U, w is a model of U. Moreover, w
is a stable model of Residue(w), where Residue(w) can be viewed as a natural
updated program.

Fact 23 Let P,U be programs. If a possible world w from Kpgu satisfies the
stability condition, then

— w is a model of U
— w is a stable model of Residue(w).

Proof Sketch: It is straightforward to show that w is a model of U: w =
Least(Residue(w) U Defaults(w)) = Least(U U (P \ Rejected(w)) U Defaults(w)).
If not A € Defaults(w), then A € w, therefore not A € w™, i.e.

Least(Residue(w) U Defaults(w)) C Least(Residue(w) U w ™).

Let us suppose that not A € w~ and there is no clause ¢ € Residue(w)
such that head(c) = not A and w |= body(c). Therefore, for each clause ¢’ €
Residue(w) holds that if head(c') = A, then w £ body(c') (otherwise A € w).
Hence, it holds that

Least(Residue(w) Uw™) C Least(Residue(w) U Defaults(w)).0

Now we demonstrate the important role of distinguished paths and good
worlds for updated programs specification. Good worlds and worlds satisfying
the stability condition coincide.

Theorem 24 Let P,U be given. Then w, is a good world from Kpgu iff wy
satisfies the stability condition.

* The term “stability condition” is not used in [3].

Proof Sketch:

=

We assume a correctly rooted p-path o = (wg, w1, ..., w,) terminated in w,.

If (wp—1,wy) € p1, then Defaults(w,) = woy.

Otherwise, Defaults(w,) = wo U (w, \ wy—1) and in both cases we have a “com-
putation bottom-up” starting in wg and terminated in wy, i.e.

wy, = Least(Residue(wy) U Defaults(w,,)).

<=
wy, = Least(Residue(wy,) U Defaults(wy,)) is assumed. According to the Fact 23,
wy, is a stable model of the Residue(w,). It means, there is a correctly rooted
p-path o in Kpgesigue(w,) terminated in w, (the Theorem 10). Lemma 25 shows
that w, is a good world also w.r.t. Cpgy. O

Lemma 25 Let P and U be programs and w, be a total interpretation from
Kpauv.

If o = (wo,...,wy) is a correctly rooted p-path from K pesidue(w,) which is
terminated in w,, then there is a correctly rooted p-path o' in Kpgy which is
terminated in w,,.

Proof Sketch: If (w;,w;y1) € o and there are clauses ¢ € U and d € P such
that w; |= body(c), w; | body(d), and head(c), head(d) € w;t1, head(c) #
head(d), then there is a path (w;, w',w;;1), where w' = w; U{L € w;y1 : Ic €
U (head(c) = L)}.

By repeating this construction we get a path from Kpgy which is correctly
rooted and terminated in w,. O

Finally, the next straightforward consequence shows that good worlds from
Kpgu have reasonable properties from the viewpoint of updated programs spec-
ification.

Consequence 26 Let P,U be programs and w be a good world of Kpgy. Then

— w is a model of U,
— w is a stable model of Residue(w).

It is time to specify P & U (using distinguished p-paths and good worlds).

7.2 Updated programs

In general, each (non-trivial) update may be realized in different ways. (More-
over, we accept the stable-model semantics, therefore it is natural to allow more
results of an update.)

The most simple possibility is to consider Residue(w) as an updated program
(for any good world w).

A further possible specification of an updated program: Kpgpy determines
a set S of programs® as follows. Each distinguished p-path o determines one
program II from the set.

The construction of IT: Let a distinguished p-path o = (wg, ..., w,) be given.
For each edge (’LUZ',’LUZ'_H) € p1 U pa let w; = {Ll,...,Lm} and Wit1 \wi =
{L,..., Li}. We put LY < Ly, ..., L, into II for each j =1,... k.

))))

The good world end(o) of ¢ is the (only) stable model of IT:

Fact 27 Let II be constructed from Kpgy over a distinguished p-path o as
above.
Then the good world end(c) of o is the (only) stable model of II.

Proof Sketch: First, end(c) is a stable model of IT: it is a good world and
a terminal of a correctly rooted path from K. Second, it is the only total
interpretation of K7 which terminates a correctly rooted p-path. O

IT introduced above is a member of a family of representatives of P ¢ U in
a sense.

Of course, there are more sophisticated possibilities how to construct P $ U.
A special attention deserves an idea of partial evaluation of P with respect to
the continuation nodes of Ky, see [12].

All presented proposals for a specification of an updated program on the
basis of pgy are cautious, they select one of the possible alternatives. Skeptical
solutions will be discussed in a forthcoming paper.

Remark 28 Our approach can be expressed also in terms of stable model (an-
swer set) programming paradigm [15,13,17]. Consider a model w of U. It can be
said that the model represents the information of U (from a point of view). The
model can be viewed as a basis of a constraint satisfaction process and the rules
of P can be viewed as constraints. Some of the constraints are not applicable to
w (w does not satisfy the constraints), they are rejected. The rest of the con-
straints is applicable and may be added to the rules from U. The application of
the constraints results in some modifications of w (the solutions of the constraint
satisfaction process).

8 Conclusions

The approach presented in this paper shows that updates of programs may be
specified in a purely semantic frame. The approach is very simple, it does not
need an extension of the language and/or of the program(s). There is a variety
of syntactic implementations of given semantic specification. In this paper some
straightforward constructions are proposed.

The main contributions of the paper may be summarized as follows:

— a semantic treatment of justifications in terms of Kripke structures,

5 We may say that S is a family of representatives for P & U.

— a characterization of stable models in terms of Kripke structures,
— asemantic (and sensitive w.r.t. justifications) characterization of generalized
logic programs revisions.

A forthcoming paper will be devoted to a more thorough comparison of the
approach of [3] and of the approach presented here. Further, more sophisticated
possibilities of P @& U specification in terms of Kpgy will be investigated. Sim-
ilarly for an extension to the case of dynamic program updates specification
by Kg(p,:sesy (some priorities have to be assigned to the edges of the Kripke
structures).

Also the topic of inconsistent generalized logic programs and their revisions
(their use in dynamic logic programming) devotes an interest.

Another open problem is a compilation of stable model computing in the
spirit of [4], see also [5]. The off-line part of the computation provides a con-
struction of the Kripke structure associated with the given program. The on-line
part consists in identifying the stable models in the Kripke structure.

Our approach uses an old idea of TMS, [6] (and a formal reconstruction of
TMS by Elkan, [7]). Updates must respect dependencies among literals. Justifi-
cations of believed facts are important parts of knowledge bases. Argumentation
must not be a circular one. There are some basic assumptions of each argumen-
tation (justification) — axioms (facts) and default assumptions.

Last, some remarks about dynamic Kripke structures (DKS): The concept
was introduced and studied in [18,19]. The basic idea about DKS consisted in
some transformations of possible worlds. A possibility to modify dynamically
the accessibility relation was proposed in [19]. Now, in the present paper the dy-
namics is implicit in the operation on Kripke structures. Hence, a generalization
of the DKS concept (and its applications to the study of knowledge evolution,
of hypothetical, nonmonotonic reasoning) is a goal of our research in the future.

Acknowledgments 1 would like to thank anonymous referees for their comments.
Thanks to Stefan Baloc, Damas Gruska, and Ivan Strohner for the remarks to an
earlier version of the paper. The work was partially supported by Slovak agency
VEGA under the grant 1/7654/20.

References

1. Alchourrén, C., Makinson, D., Gardensfors, P. On the logic of theory change. Par-
tial meet contraction and revision functions. Journal of Symbolic Logic, 50:510-530
(1985)

2. Alferes, J.J., Pereira,L.M. Update-programs can update programs. LNAI 11126,
Springer 1996

3. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C. Dy-
namic Logic Programming. Proc. KR’98, 1998

4. Cadoli, M., Donini, F.M., Schaerf, M. Is intractability of non-monotonic reasoning
a real drawback? Artificial Intelligence 88, 1-2, 215-251

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Cadoli, M., Donini, F.M., Liberatore, P., Schaerf, M. Space Efficiency of Propo-
sitional Knowledge Representation Formalisms. Journal of Artificial Intelligence
Research 13 (2000), 1-31

Doyle, J. A Truth Maintenance System. AI Journal 12 (1979),231-272

Elkan, C. A Rational Reconstruction of Nonmonotonic Truth Maintenance Sys-
tems. AI Journal 43 (1990) 219-234

Gardenfors, P., Rott. H. Belief Revision. In D. Gabbay, C. Hogger, J. Robinson:
Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 4, Epis-
temic and Temporal Reasoning, 35-132, 1995

Gelfond, M., Lifschitz, V. The Stable Model Semantics for Logic Programming.
Proc. 5th ICLP, MIT Press, 1988, 1070-1080

Leite, J., Pereira, L. Generalizing Updates: from models to programs. In LNAT 1471,
1997

Leite, J., Pereira, L. Iterated Logic Programs Updates. In Proc. of JICSLP98
Lifschitz, V., Turner, H. Splitting a Logic Program. Proc. of the 11th Int. Conf. on
Logic Programming, 1994, 23-37

Lifschitz, V. Answer set planning. Proc. of ICLP, 1999

Marek, W., Truszczynski, M. Revision Programming. Theoretical Computer Sci-
ence, 190 (1998), 241-277

Marek, W., Truszczynski, M. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, 375-398,
Springer 1999

Przymusinski, T., Turner, H. Update by inference rules. The Journal of Logic Pro-
gramming, 1997

Niemela, 1. Logic Programs with Stable Model Semantics as a Constraint Program-
ming Paradigm. Workshop on computational aspects of nonmonotonic reasoning,
Trento, 1998

Sefrének, J. Dynamic Kripke Structures. Proc. of CAEPIA’97, Malaga, Spain
Sefréanek, J. Knowledge, Belief, Revisions, and a Semantics of Non-Monotonic Rea-
soning. Proc. LPNMR’99, Springer 1999

J. Van Benthem, Semantic Parallels in Natural Language and Computation, in:
Logic Colloquium ’87, eds. Ebbinghaus H.-D. et al., 1989, 331-375, North Holland,
Amsterdam

Witteveen, C., Brewka, G. Skeptical reason maintenance and belief revision. Arti-
ficial Intelligence 61 (1993), 1-36

