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Abstract

In this diploma thesis, we work with an autonomous robot Smely Zajko. The robot

was built in previous works at Comenius University; we focus on integrating a new

sensor - laser range sensor into the set of existing sensors.

Based on our analysis of original state of the robot, we change the architecture of its

system. We reimplement original code into ROS framework and create a more exible

system that allows running multiple independent experiments, record and replay data

from log �les and it is easy portable to another robot as well.

We propose a new algorithm for reactive obstacle detection and avoidance using the

laser range sensor. We tested our implementation several times in indoor and outdoor

environment. We also took part in the international robotic contest Robotour where

we won the third place. The results of our testing show that the robot is now able

to detect a more suitable path with our algorithm mainly because of the probabilistic

approach.

Key words: mobile robot, robotour, navigation, laser range sensor
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Abstrakt

V tejto diplomovej práci pracujeme s autonómnym robotom Smelý Zajko. Robot

bol postavený v rámci predchádzajúcich prác na Univerzite Komenského; my sa sústredíme

na integrovanie nového laserového senzora medzi ostatné u¾ existujúce senzory.

Na základe analýzy pôvodného stavu robota meníme architektúru systému. Imple-

mentujeme pôvodný kód do frameworku ROS a vytvárame exibilnej¹í systém, ktorý

nám umo¾òuje spú¹»a» niekoµko nezávislých experimentov, nahráva» a prehráva» dáta

zo senzorov a taktie¾ je ho mo¾né jednoducho prenies» na iného robota.

Navrhujeme nový algoritmus na reaktívnu detekciu preká¾ok s vyu¾itím laserového

senzora. Na¹u implementáciu sme niekoµkokrát testovali v interiéri aj exteriéri. Tak-

tie¾ sme sa zúèastnili medzinárodnej robotickej sú»a¾e Robotour, kde sme získali tretie

miesto. Výsledky testovania ukazujú, ¾e robot je teraz lep¹ie schopný detekova» vhod-

nej¹ie cesty a to hlavne vïaka pravdepodobnostnému prístupu, ktorý sme zvolili.

Kµúèové slová: mobilný robot, robotour, navigácia, laser range senzor
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Chapter 1

Introduction

1.1 Motivation

An autonomous car or self-driving car is a vehicle that is capable of sensing its envi-

ronment and navigating without human input. Companies like Google, Uber, Tesla

have big projects in this area that attract attention of media and society. Many people

believe that self-driving cars are the future of car industry and that they completely

change the way how we travel.

Though many such vehicles are being developed, automated cars permitted on

public roads are not yet fully autonomous. They all require a human driver at the

wheel who is ready at a moment's notice to take control of the vehicle.

Research in this area is of the big importance. Many people try to �nd new ap-

proaches and algorithms how to face new challenges and improve self-driving cars.

In this thesis, we use autonomous robot called Smely Zajko (Brave Bunny). Smely

Zajko was built in 2011 by Miroslav Nadhájsky [MN10] as a part of his diploma thesis.

Further improvements were made by Michal Moravèík in 2015 [Mor15].

1.2 Goal

Both, Nadhájsky and Moravèík took part in a Czech competition Robotour. In this

competition, autonomous robots compete in delivering a load in a park. They are

allowed use only the paths in the park.
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Even though Smely Zajko regularly attends robotic competitions like Robotour,

there is still a large space for improvements. The main goal of this work is to integrate

a new sensor: laser range sensor, change the architecture of the software and try new

algorithms in order to obtain better results.
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Chapter 2

Preliminaries

The main aim of this chapter is to introduce a reader basic terms which are used in

this thesis. At �rst, we provide a general overview of arti�cial intelligence, neural

networks and robotics. Later, we present a laser sensor which we use in our thesis and

we introduce a robotic contest Robotour.

2.1 Arti�cial Intelligence

Arti�cial Intelligence is the science and engineering of making intelligent machines,

especially intelligent computer programs. It is related to the similar task of using

computers to understand human intelligence, but AI does not have to con�ne itself to

methods that are biologically observable.

Nowadays, there are many branches of arti�cial intelligence:

• Logical - what a program knows about the world in general, the facts of the spe-

ci�c situation in which it must act, and its goals are all represented by sentences

of some mathematical logical language.

• Search - arti�cial intelligence often examine a large number of possibilities, e.g.

moves in a chess game or inferences by a theorem proving program.

• Pattern recognition - when a program makes an observation of something, it

is often created to compare what it sees with some pattern. There are many

types of pattern recognition in computer vision for example detection of people

or speci�c type of objects in images.
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This list surely miss some branches, because no-one has identi�ed every single branch

of arti�cial intelligence yet.

2.2 Neural Networks

Arti�cial neural networks are structures, which are inspired by biological neural net-

works. Neural networks are based on the mesh of neurons. Thanks to that we can

solve various number of complicated tasks e.g. image recognition, classi�cation of

data, approximation of functions or in arti�cial intelligence.

2.2.1 Neuron

A neuron is an information-processing unit that is fundamental to the operation of a

neural network [Hay98]. Perceptron is a machine learning algorithm that helps provide

classi�ed outcomes for computing. It dates back to the 1950s and represents a funda-

mental example of how machine learning algorithms work to develop data. Perceptron

is getting n inputs xi and each input has own weight wi. The result of perceptrons is

showed in equation 2.1.

v =
∑n

i=1 xi ∗ wi

Figure 2.1: Equation for perceptron

For better result, we can add another not zero �xed input parameter which is

called bias. Without bias result of our equation is inuenced by activation function a

lot. After adding bias our equation looks like in Figure 2.2

v =
∑n

i=1 xi ∗ wi + bk

Figure 2.2: Equation for perceptron with bias

Now we must apply activation function to our sum with bias. Activation function

is mathematical formalism to approximate the inuence of an extracellular �eld on an

axon or neurons [Rat86]. After applying activation function to the equation we get

2.3.

The basic ow of using previous steps is in the next �gure 2.4. As an activation

function, we use signum function [Hay98]. For the corresponding form of a sigmoid

4



ai = ϕ(
∑n

i=1 xi ∗ wi + bk)

Figure 2.3: Equation after applying activation function

function, we may use the hyperbolic tangent function.

xn

x3

x2

x1

bk

∑

wn

w3

w2

w1

Inputs

Weights

Weighted sum Activation function

ai =


1,

∑n
i=1 xi ∗ wi + bk>0

0,
∑n

i=1 xi ∗ wi + bk = 0

−1, otherwise

Figure 2.4: Basic ow of perceptron

2.2.2 Multilayer perceptron

Multilayer perceptron (MLP) is a feedforward multi-layered neural network consisting

of input neurons that receive the input signal, which is propagated forward through

the network to produce the activations of the output layer. The hidden neurons are

organised in disjoints layers that are propagated one at a time [Hay98]. Multilayer

perceptrons are commonly used with the error backpropagation algorithm introduced

by [Rum86]. It is based on the concept of propagation of the signal through the network

in order to �nd the activation of the output layer. Basic signal-ow graph of an MLP

is in the next �gure 2.5.
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Input layer

Hidden layer

Output layer

Figure 2.5: Signal-ow graph of an MLP

2.2.3 Learning

Learning can be broadly de�ned as a computational method using the experience to

improve the performance or to make accurate predictions. It is not good to "hardcode"

agent behaviour sometimes when we do not know how robot or program should react.

If the environment is not known, learning is the only way to "program" him. We know

few types of learning.

• Supervised learning

• Unsupervised learning

• Reinforcement learning

2.2.3.1 Supervised learning

The learner receives a set of labelled examples as training data and makes predictions

for all unseen points. This is the most common scenario associated with classi�cation,

regression, and ranking problems. [MM12]
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2.2.3.2 Unsupervised learning

The learner exclusively receives unlabelled training data and makes predictions for all

unseen points. Since in general no labelled example is available in that setting, it can

be di�cult to quantitatively evaluate the performance of a learner. Clustering and

dimensionality reduction are examples of unsupervised learning problems.

2.2.3.3 Reinforcement learning

The training and testing phases are also intermixed in reinforcement learning. To

collect information, the learner actively interacts with the environment and in some

cases a�ects the environment, and receives an immediate reward for each action. The

object of the learner is to maximize his reward over a course of actions and iterations

with the environment.

2.2.4 Backpropagation

Backpropagation is an algorithm which is propagating an error through the whole

neural network [Hay98]. It is usually considered to be a supervised learning.

2.2.5 Rprop

Rprop algorithm [MR93] is based on traditional backpropagation algorithm. Size of

weight change is not based on derivation of error but it changes by the previous result

in last iteration.

2.3 Robotics

Robotics is a branch of engineering that involves the conception, design, manufacture,

and operation of robots. This �eld overlaps with electronics, computer science, arti�cial

intelligence, mechatronics, nanotechnology and bioengineering.

Science-�ction author Isaac Asimov is often given credit for being the �rst person to

use the term robotics in a short story composed in the 1940s. In the story, Asimov sug-

gested three principles to guide the behaviour of robots and smart machines. Asimov's

Three Laws of Robotics [Asi41], as they are called, have survived to the present.
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1. A robot may not injure a human being, or, through inaction, allow a human

being to come to harm.

2. A robot must obey the orders given it by human beings except where such orders

would conict with the First Law.

3. A robot must protect its own existence as long as such protection does not conict

with the First or Second Laws.

Nowadays robots are used more and more in our lives. We can use robots in medicine

for performing low-invasive surgery, industry for lifting heavy loads or even in the sport

for entertainment. Many robots are developed to do jobs that are hazardous to people

for example �nding survivors in ruins, defusing bombs, exploring dangerous locations.

2.4 LiDAR

LiDAR is device which is used for making depth scans of targets. Laser introduces

a laser beam into the environments and measures the time of ight of the signal to

return. The same principle is used as in ultrasonics sensors, unlike a sonar bean has

very wide range, a laser produces an almost in�nitesimal �eld of view. If the laser is

directed in a scan, it can produce depth values. There are several major components

to a lidar system:

• Laser

• Scanner and optics

• Photodetector and receiver electronics

• Position and navigation systems

Lidar has a wide range of applications which can be divided into two types.

• Airborne type involves the acquisition of three-dimensional ground point data by

utilising a laser scanning device operating at frequencies in the near infra-red.

The scan direction is orthogonal to the ight path. The unit is mounted in a

�xed or rotary winged aircraft ying at altitudes of up to 1000 m.

8



• Terrestrial type is almost the same as airborne type, except that it is ground

based. Locating the scanner on the ground gives some distinct advantages for

capturing discrete objects from multiple angles [PR06].

Figure 2.6: Hokuyo LiDAR sensor which is used in our work.

2.5 Robotour Contest

Robotour is an international robotic competition, which is held every year since 2006.

In this competition, autonomous robots compete in delivering the load, usually a beer

can. They are allowed only to use paths in the park and they have to avoid obstacles.

All the competition rules are summarised below.

Competition rules

• Bring load to the �nish. Usually 5 litres beer can.

• The robot can move only in marked lines in the park.

• The robot can not collide with an obstacle.

• The robot has to have a big red button to immediate stop.

9



• The robot can have maps only from one common server - Open Street Maps.

• The robot can move only on road.

We note that we took part in this competition in September 2016 in Deggendorf,

Germany and won the third place.

10



Chapter 3

Smely Zajko

In this chapter, we explain and describe an integration of hardware and software of

robot Smely Zajko (Brave Bunny). Our work is based on previous works by Miroslav

Nadhajský [MN10] (2010) and Michal Moravèík [Mor15] (2015). In �gure 3.1, we can

see the actual built of the robot as it was used in the competition.

Figure 3.1: Robot Smely Zajko as we used it in Robotour 2016 competition.

At �rst, we describe the hardware parts of the robot and implemented software. At

the end of the chapter, we analyse this solution so that we can better de�ne the part

we need to improve.

11



3.1 Hardware

We a use robot which was built in previous works from Miroslav Nadhajský [MN10]

and Michal Moravèík [Mor15]. The core of the robot is almost the same, but we added

a new laser range sensor which is the crucial part and the main topic of this thesis.

3.1.1 Sensors

The robot has some sensors which are placed on the top and on the sides of the robot:

Laser range sensor, GPS, Ultrasonic Range�nder Sensor, Compass and Camera. These

sensors allow the robot to "see" world around it.

3.1.2 Laser range Sensor

As we mentioned in previous section 2.4, we use Hokuyo laser range sensor in our robot.

This sensor allows us to identify obstacles on the road and also helps us to �nd the

correct path. We can see basic sensor structure in Figure 3.2.

Figure 3.2: Structure diagram of Hokuyo LiDAR sensor.

The sensor is communicating directly with a computer attached to the robot via

ethernet cable. This sensor use a laser to scan 270◦ �eld of view (we �lter input to only

180◦ �eld of view, because we are not interested in backward directions). Positions of

the obstacles in the range are calculated with step angle and distance. We can see,

how the laser scanning image works in Figure 3.3.

12



Figure 3.3: Laser scanning diagram.

3.1.3 GPS

We use Navilock NL-302U for GPS data. The device has RS-232 port as output, which

is converted to USB through FTDI chip.

3.1.4 Compass

For orientation, we use module SparkFun HMC6343 which has 3 axis gyroscope and

accelerometer. We want to use a gyroscope and an accelerometer for later work with

more precious road mapping and detection.

3.1.5 Ultrasonic Range�nder Sensor

We use �ve ultrasonic sensors Devantech SRF08 which are used to detect obstacles

with 3cm - 6cm range and force robot to stop immediately. Communication with the

ultrasonic range�nder sensors is done via the I2C bus.

Ultrasonic sensors emit acoustic energy into environment and measure time of ight

of the signal to return. The beam pattern of our ultrasonic sensors is conical with the

width of the beam being a function of the surface area of the transducers and is �xed.

The beam pattern of sensors is shown in 3.4.

3.1.6 Camera

For road recognition, we use an ordinary camera. We take as many images as possible

from the camera, push them into the neural network and try to recognize road. We

use old trained neural network from previous work from Moravcik [Mor15]. One of our

13



Figure 3.4: Beam which is emmited by ultrasonic sensor.

goals is to verify results from his network. This network has some problems because it

identi�es grass and road, but when robot reaches some road without grass on sides, it

has problems with road following.

3.2 Software

In this section, we introduce the software part of robot that was done before and

describe the technologies used in this project.

3.2.1 Code on SBot board

The code runs on SBot board which is based on AVR ATmega128 Microcontroller.

Code communicates with our main code core base via bu�ers which are sent from

board to main computer.

This code takes care for obstacles, steering and for status reporting also. It is useful

to have this code on the low level because we do not have to care about it on the high

level.
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3.2.2 Custom made core

The core software in robot was built in C++. In our work, we want to generalize

and rewrite this core to the Robot Operating System 4.1. Rewriting robot core to the

specialized framework allow us to modularize code base, avoid bugs and provides more

exible components management in the future.

3.2.3 FANN

For path recognition, we use FANN library [Nis03]. This library uses the iRprop

algorithm for learning. The library is very suitable for out purpose because it is really

quickly process training data. FANN adds biases to every layer automatically so usage

of the library is easier.

3.3 Previous work analysis

In this section, we analyse the previous state of the whole robot. We discuss hardware

and software parts of the robot and some bottlenecks in implementation. We describe

the main problems we had with the original state of the robot and suggest further

improvements.

3.3.1 Hardware

When we tested the robot for the �rst time, there were not so many problems with

the hardware part. The only thing we decided to redesign was Hokuyo sensor. The

original position of the sensor was on the top of the robot as you can see in the Figure

3.5.

The top position was not so good because of a negative detection of obstacle and

curb. As we can see in the picture 3.7 the third situation, robot sometimes can create

a negative obstacle. We had the similar experiences as Murphy exaplains in his book

[Mur00]. The laser range sensor produced similar negative obstacles.

That is why we decided to move Hokuyo sensor from the top to the bottom of

the robot. This relocation seemed to be a good idea because now we can recognize

obstacles which are smaller and located further.
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Figure 3.5: Hokuyo sensor on the top of the robot

However, during the competition in 2016, there was heavy rain and the sensor was

inuenced by it. The sensor recognised rain drops, which were bounced o� the ground,

as obstacles.

So we concluded that we should create some kind of cover from the bottom to

protect Hokuyo in next competition.

3.3.2 Software

The software part of Smely Zajac was in very poor quality. There were many parts

which had low cohesion (a class did a lot of jobs that do not have much in common) and

very high coupling (a class has a lot of dependencies) that caused some performance

problems. We point out some of these problems:

• Due to synchronous architecture in the main function, there was a problem with
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Figure 3.6: Hokuyo sensor on the bottom of the robot

evaluating of data. The program waited for data from camera but also skipped

two frames of three (which had signi�cant impact on performance and logging

data from other sensors), then evaluated everything (neural network, direction,

localization and planning algorithm), render windows with data and �nally sent

calculated direction to the robot. We provide pseudo-code of this synchronous

architecture in algorithm 1.

• We wanted to implement new obstacle avoidance algorithm into the existing set

of algorithms. It was almost impossible to implement it due to many di�erent

constants which combined data from algorithms, neural network and sensors in

some strange way.

• Classes for reading data from sensors had low cohesion for example class for

reading data from Hokuyo also rendered window.

That is why we decided to completely redesign software architecture including the
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Figure 3.7: Situations and resulting images when sensor is located on the top

used technologies. We describe it in the next chapter in details.
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Function main()

begin

while 1 do

if every third frame from camera then

write data to log �les;

evaluate direction;

render windows;

end

end

end

Algorithm 1: Previous synchronous architecure
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Chapter 4

New approaches

After the competition, we decided to rewrite Smely Zajko software part to ROS frame-

work due to reasons, which we mentioned in the previous chapter. Some parts of this

chapter are based on two sources - o�cial ROS documentation [ros] and the book

[AM13]. At �rst, we describe this framework, further, we mention obstacle avoidance

algorithms which can be used with our sensor.

4.1 Robot Operating System

ROS is the Robot Operating System framework, which is used nowadays by hundreds of

research groups and companies in the robotics industry. But it is also the painless entry

point to robotics for nonprofessional people. ROS was originally developed in 2007

in Stanford Arti�cial Intelligence laboratory in support of AI Robot STAIR project

[QBN07].

4.1.1 ROS architecture

The ROS architecture has been designed and divided into three sections or level of

concept. We discuss more about each of concept in the next sections.

• The �le system level

• The Computation Graph level

• The Community level
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4.1.1.1 The �le system level

ROS program is divided into folders like in operating system. These folders have �les

that describe their functionalities. Abstraction of ROS �le system can be found in

�gure 4.1.

Filesystem Level

Stacks Stack Manifest

Packages

ServicesMessagesManifest Code Others

Figure 4.1: Abstraction of ROS Filesystem level.

• Packages form the atomic level of ROS. A package has the minimum structure

and content to create a program within ROS. The goal of packages is to create

minimal collections of code that are easy to reuse.

• Manifests provide information about a package, license information, dependen-

cies, compiler ags. Manifests are managed with a �le called manifest.xml.

• Stacks are obtained when you gather several packages with some functionality.

The main goal of stacks is to simplify the process of code sharing. Each stack

has an associated version and can declare dependencies on other stacks. In ROS,

there exists a lot of these stacks with di�erent uses, for example, the navigation

stack or manipulation stack.

• Stack manifests (stack.xml) provide data about a stack, including its license in-

formation and its dependencies on other stacks. The bare minimum for stack.xml

�le is much like a readme �le.
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• Message is the information that a process sends to other processes. ROS has a

lot of standard types of messages such as geodata, laser range sensor or arrays

messages. ROS uses a simpli�ed messages description language for describing the

data values that ROS nodes publish.

• Service enables request, response communication between nodes. Services be-

have like classic web servers - one node sends the request and another node sends

the response to this request.

4.1.1.2 The Computation Graph level

ROS creates a network where all the processes are connected. Any node in the system

can access this network, interact with other nodes, see the information that they send,

and transmit data to the network.

Nodes Master Parameter Server Messages

Computation Graph Level

ServicesTopics Bags

Figure 4.2: Abstraction of ROS Computation level.

• Nodes are processes where computation is done. If we want to have a process

that can interact with other nodes, we need to create a node with this process

to connect it to the ROS network. Usually, a system will have many nodes to

control di�erent functions.

• Master provides name registration and lookup for the rest of the nodes. If

we don't have it in our system, we can not communicate with nodes, services,

messages, and others.

• Parameter Server gives us the possibility to have data stored using keys in a

central location. With this parameter, it is possible to con�gure nodes while it

is running.
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• Messages allow nodes to communicate with each other. A message contains

data that sends information to other nodes. We can use standard messages or

we can develop our own type of messages.

• Topics: Each message must have a name to be routed by the ROS network.

When a node is sending data, we say that the node is publishing a topic. Nodes

can receive messages from other nodes simply by subscribing to the topic. A

node can subscribe to a topic, and it is not necessary that publishing node exists.

This permits us to decouple the production of the consumption.

• Services: When we publish topics, we are sending data in a many-to-many

fashion, but when we need a request or an answer from a node, we can not do

it with topics. The services give us the possibility to interact with nodes. Also,

services must have a unique name. When a node has a service, all the nodes can

communicate with it, thanks to ROS client libraries.

• Bags are a format to save and play back the ROS message data. Bags are an

important mechanism for storing data, in our case sensors data. We can use this

data later in many ways, for example in visualization or running di�erent types

of algorithms.

4.1.1.3 The Community level

The ROS Community level concepts are ROS resources that enable separate commu-

nities to exchange software and knowledge. We will not talk about this level a lot

because it does not provide us any important technical background.

4.2 Ca�e

Ca�e [JSD+14] is a Deep Neural Framework created by the Berkeley Vision and Learn-

ing Center, UC Berkeley. It reduces the work of the user by allowing the user to de�ne

complex deep neural networks in a simple CSS-like language. However, internally, it

uses the BLAS libraries, OpenCV library as well as nVidia's CUDA to generate highly

optimized code in C++ with a possibility to use GPU to run it. It supports a variety
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of input types including raw image lists, LMDB, LevelDB, HDF5 multi dimensional

data.

Ca�e provides a complete toolkit for training, testing, �netuning, and deploying

models, with well-documented examples for all of these tasks. As such, it is an ideal

starting point for researchers and other developers looking to jump into state-of-the-art

machine learning.

We suggest to switch to Ca�e or other modern similar Neural Network Framework

in the future due these reasons

• Ca�e is already implemented into ROS as a package.

• FANN is an old library which is no longer maintained.

• We can not duplicate our old model in FANN, because we do not have the ex-

act training set from which it was created and actual code base is not working

correctly with new models.

4.3 Obstacle Avoidance Algorithms

In our work, we studied previous works which propose new obstacle avoidance algo-

rithms using only laser range sensor. Normally obstacle avoidance is considered to be

distinct from path planning in that one is usually implemented as a reactive control law

while the other involves the pre-computation of an obstacle-free path which a controller

will then guide a robot along. In the next sections, we explain few basic algorithms

that we studied.

4.3.1 Vector Field Histogram

Vector Field Histogram was proposed in work [BK91] as a reactive obstacle algorithm.

The Vector Field Diagram uses a two-dimensional Cartesian grid, called the histogram

grid, to represent data from laser range sensors [KBM98]. Each cell in the histogram

grid holds a certain value that represents the con�dence of algorithm in the existence

of an obstacle at that location.

A high-level description of the algorithm follows

• Collect current laser range sensor readings.
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• Determine the cell in the histogram in which obstacle lies. If the sensor did not

detect an obstacle, determine the cell lies at the maximum range.

• Calculate an active window surrounding the center of the robot.

• Set a threshold such that a polar histogram value bellow means that direction is

free and above the threshold is occupied.

• Find the closest free direction to the goal.

In picture 4.3, we can see an example of a robot situation and histogram.

Figure 4.3: Example of VFH algorithm histogram grid

4.3.2 Nearness Diagram Navigation

Nearness Diagram was proposed in work [MM04] as reactive collision avoidance for

mobile robots. Nearness Diagram Navigation is reactive based obstacle avoidance al-

gorithm. It uses a divide and conquer strategy based on situations to simplify the

di�culty of navigation.

Nearness Diagram Navigation carries out the environmental information extraction

in three steps. Firstly, from the information available, two nearness diagrams are

constructed (the PND and the RND). Secondly, the PND is analysed to identify regions

and to select one of them. Thirdly, the RND is analysed to evaluate the robot safety

situation. Subsequently, this information is used to identify one of the �ve general

situations.

• The PND represents the nearness of the obstacle to the central point. The

topology of the environment does not vary in this diagram, so it is used to extract
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information of environmental characteristics. The PND analysis is performed in

three stages. Firstly, gaps in the environment are searched for. From these gaps,

regions of the free space are obtained, and �nally one of them is chosen by one

criteria.

• The RND represents information about the nearness of the obstacles from the

robot. RND evaluates the robot safety situation based on minimum tolerable

distance.

There are �ve general situations as we mentioned before. They cover all the pos-

sibilities among the robot location, goal location and obstacle con�guration, but they

have to be checked in rigorous order.

• Low Safety 1, if there is at least one sector that exceeds the security nearness

in the RND, only on one side of the rising discontinuity, which is closer to the

goal sector, of the selected valley.

• Low Safety 2, if there is at least one sector that exceeds the security nearness

in the RND, on both sides of the rising discontinuity, which is closer to the goal

sector, of the selected valley.

• High Safety Goal in Valley, if the goal sector belongs to the selected valley.

• High Safety Wide Valley, if the selected valley is wide.

• High Safety Narrow Valley, if the selected valley is narrow.

4.3.3 Smooth Nearness Diagram

Smooth Nearness Diagram proposed by [DB08] is an evolution of ND+. As compared

with the ND+ navigation scheme, the key di�erence in approach is that a single motion

law is proposed that is applicable to all possible con�gurations of surrounding obstacles.

The SND method works as follows: �rst, the laser range data is analysed to deter-

mine the structure of obstacles surrounding the robot. The best heading which makes

progress towards the goal direction set by the global planner is then selected. This

process of determining a safe trajectory is repeated for each sensor update.
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In the picture 4.4, we can see one SND algorithm step. The robot detects four gaps,

indicated by dashed lines, in the depth measurements around it. There are two types

of gaps

(a) is created by neighbouring depth measurements di�ering by more than the robot

diameter

(b) one depth measurement returns no obstacle in range

The four gaps de�ne regions and valleys around the robot, some of which are

labelled. The robot choose Vbest, θrg, and θog based on the goal direction θgoal.

Figure 4.4: One SND algorithm step
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Chapter 5

Implementation

In this chapter, we explain some important parts of software implementation. We have

legacy code from previous works which we reimplement into Robot Operating System

framework. We note that we have completely changed the architecture of the system.

We have also designed a new probabilistic obstacle avoidance algorithm that uses data

from laser range sensor. Details of our implementation including the pseudo-codes can

be found in following sections.

5.1 Hokuyo sensor algorithms

5.1.1 Implementation from previous works

The �rst naive algorithm in the previous implementation of evaluation obstacles from

Hokuyo was based on detecting the shortest beam from raw Hokuyo data. This had

some shortcomings, because there could be artifacts in data which we incorrectly eval-

uated in algorithm or results from Hokuyo scans were not correctly synchronized with

evaluated direction from the camera. We provide the algorithm pseudo-code in Algo-

rithm 2.

5.1.2 Proposed probabilistic algorithm for obstacle avoidance

We decided to rewrite this algorithm before the competition. We agreed, that single

boolean variables for each direction is not enough and we need some kind of probability

for that. So we proposed and implemented a new algorithm which returns oat values

28



input : Direction index, raw data from Hokuyo sensor

output: Boolean ag indicates the obstacle

C is constant size of half of scanning area width for one direction index ;

min ← INFINITY;

foreach beam b of beams in range(direction - C, direction + C) do

if b < min then min ← b;

end

if min < maximum allowed distance for obstacle then return false;

else

return true;

end

Algorithm 2: Previous naive implementation for obstacle avoidance using only

Hokuyo laser range sensor

with probabilities, instead of boolean values. We explain more details about the new

algorithm in next sections.

5.1.2.1 Synchronizing directions with camera

Evaluating direction from the camera is divided into eleven parts (it is possible to

use more than eleven parts, but for our purpose eleven is enough), every part results

into the probability of good direction. We needed from our implementation to be

backwards fully compatible with this API so we also split laser range data into eleven

same equal parts. There were problems with synchronization, which were not connected

to software part, but hardware. The reason is that, Hokuyo has detection angle 270◦,

angular resolution 0.25◦ and 1081 measurement steps. In the �gure 3.3, we can see

that index 540 is in the middle of scanning. But in reality, this middle is displaced

more to left or right side as we can see in �gure 5.1, the green dot is expected centre

and the red dot is displaced centre.

So we needed to introduce variable directions, which holds corrected indices of

beams against the camera, which we empirically measured. For simplicity in next

parts, we provide the exact mathematical model, which does not count with these

anomalies.
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Figure 5.1: Displacement of lidar centre

5.1.2.2 Algorithm initialization

During the initialization phase of our algorithm, we want to calculate maximum dis-

tance which has probability pi = 1. The sketch of this idea is in the �gure 5.3. Blue

circle means the maximum distance of sensor and red ellipse is distance with proba-

bility pi = 1. We can see that the largest distance with probability pi = 1 is in the

middle because we want prioritize straight direction.

bi = −
− sin(α) +

√
sin(α)2 − 4ac+ cos(α)2)

2a cos(α)2
(5.1)

α = beam angle in degrees

a = major axis

c = minor axis

Figure 5.2: Equation for calculating maximum distance with weight 1

Figure 5.3: Sketch of algorithm initialization
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5.1.2.3 Evaluation phase

During the evaluation phase, we want to evaluate probability for each direction. As

we mentioned in the beginning of this section, we divide laser range data into eleven

equal parts.

We take in mind all neighbour data from the sensor for one direction, not only a

few, in comparison with the previous implementation.

pi =
1

to∑
i=from

1− |i|

to∑
i=from

[
(1− |i|) li

maxi

]
(5.2)

from = index of the �rst beam which we care about

to = index of the last beam which we care about

li = normalized beam at index i, value on the red ellipsis in Figure 5.3

maxi = max (beam at i position, max allowed range), max allowed range is blue

semicircle in Figure 5.3

Figure 5.4: Equation for algorithm evaluation phase

5.2 Technologies

Due to previous works, we stuck on C++ because we want to reuse some parts - mainly

low-level parts, which communicate with sensors Sbot board, GPS, IMU and Hokuyo.

5.3 Architecture

We split previous code into few parts which are independent. These parts are sensors

publishers, debug GUIs, algorithms and robot control. This abstraction allows us to

easily maintain code, add new sensors, algorithms which result in faster development,

faster testing new algorithm and last but not least introducing fewer bugs into code.
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5.3.1 Overall

As we mentioned in previous chapter 3.3.2 there was low cohesion and high coupling

between classes. Due to nature of ROS architecture, it was quite easy to rewrite code

into more independent parts. We provide overall lookup at parts and their connection

using ROS concept publishers and subscribers in the picture 5.5. The picture consists

of several logical parts.

• Ovals are nodes.

• Nodes with the same namespace are in the same rectangle.

• Some nodes are connected with an arrow. The arrow begins in the publisher

node and ends in the subscriber node. One publishing node can publish to more

nodes and subscriber node can subscribe to more di�erent publishers.

We explain each of those components in following sections.

5.3.2 Sensors publishers

Sensors publishers publish raw data from sensors. We implemented one publisher per

one sensor. For each sensor publisher, we use the same template. We provide pseudo-

code of this template in Algorithm 3.

This allows us to write code, which can be easily modi�ed e.g. we use the same

code for publishing data from the real sensor, reading data from log �les with the

di�erent format or even generating synthetic data. For every sensor type, we created

an abstract class with bare minimum of methods namely

• Init method initializes sensor

• Read data method reads data from sensor and saves to internal structure

• Get data method provides data in ROS message format

Classes can be easily extended without changing logic behind the publishing data.

This structure allows us to replace any hardware part of the robot without carrying

a lot about software part because we just create the new class for the new sensor.

In the Figure 5.6, we provide overall lookup at the sensors architecture exported

via rqt graph.
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Function main()

begin

/* node initialization */

rosInit(node name);

/* rate object allows us to specify a frequency that we

would like to loop at. It keeps track of how long it has

been since the last call to Rate::sleep(), and sleep for

the correct amount of time */

loopRate ←setLoopRate(loop rate);

/* repeat while we are connected to ROS network, SIGINT is

not received or shutdown was called by another part of the

application */

while rosOk() do

readData();

data ← getData();

rosPublish(data);

loopRate sleep();

end

end

Algorithm 3: Pseudo-code for sensor publisher

5.3.3 Debug GUIs

Debug GUIs are nodes which listen for sensors publishers or algorithms. In our work,

we implemented original GUIs from the camera and improved version of localization

and planning and Hokuyo. In previous poor implementation was quite hard to divide

GUIs, algorithms, and control due to high coupling between modules. We implemented

similar logic as in sensors publishers - one GUI for one sensor and connected algorithms.

Due to nature ROS environment especially sockets, it is not mandatory to have running

every algorithm. It basically means - we can visualize every part of sensor including

algorithms independently. We created a template 4 similar to those in sensors publisher.

We can have as much as possible subscribers in the node, but for simplicity, we show

only one subscriber in pseudo-code.
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As we can see there is one di�erence between subscribing and publishing. When

subscribing to topic, we need to tell ROS to �re callback using ros::spinOnce() function.

The reason is that when the message arrives it is stored in a queue until ROS gets a

chance to �re our callback function.

There are two types of spin function, the �rst one is spin and second spinOnce.

The main di�erence between these two functions is that spin function empties message

queue immediately what causes the program to exit shortly after its start. On the

other hand, spinOnce periodically processes message queue and executes the callback

function.

In the Figure 5.7, we provide overall lookup at the GUIs architecture exported via

rqt graph.

5.3.4 Algorithms

Algorithm nodes are the combination of publisher and subscriber. The reason is simple,

we need to get data from sensors or previous processing such as �ltering, algorithms,

and publish them to other nodes e.g. robot controller, visualization or next processing

of data 5.

In the Figure 5.8, we provide overall lookup at the control and algorithms architec-

ture exported via rqt graph.

5.3.5 Robot Control

The robot control node needs to be divided into two parts, because we want to read

and write data to Sbot simultaneously which allows us to communicate at higher speed,

resulting in having better control over the direction.

• Sbot publisher has the spot between sensors publishers because it publishes basic

data about robot odometry, data from ultrasonic sensors and information about

the obstacle.

• Robot control is the only part, which sends commands to the robot. Robot control

collects data from all algorithms nodes and makes �nal decision based on these

data. There is the di�erence between algorithm node and robot control node

because algorithm node behaves like the pipeline - receives data, runs algorithms
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and publishes results. On the other hand, the robot control collects all data

and instead of evaluating result immediately, it has one main evaluation loop

which runs at 30Hz. It collects all saved data, combines data, runs algorithm for

calculating the direction and send command (change direction, set speed or stop)

to the Sbot. This whole process is done during the evaluation phase at 30Hz. We

provide pseudo-code for clari�cation in Algorithm 6.
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Figure 5.6: Sensors publishers namespace

Figure 5.7: GUIs namespace

Figure 5.8: Control and algorithms namespace
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/* callback function is called whenever a new message arrives.

The only variable is received data */

Function callback(data)

begin

globalData ←data;

end

/* function for visualization data */

Function renderWindow()

begin

render(globalData);

end

Function main()

begin

/* node initialization */

rosInit(node name);

subscribe(channel name, message queue size, callback function);

/* rate object allows us to specify a frequency that we

would like to loop at. It keeps track of how long it has

been since the last call to Rate::sleep(), and sleep for

the correct amount of time */

loopRate ←setLoopRate(loop rate);

/* repeat while we are connected to ROS network, SIGINT is

not received or shutdown was called by another part of the

application */

while rosOk() do

renderWindow();

spinOnce();

loopRate sleep();

end

end

Algorithm 4: Pseudocode for subscribing to publisher and rendering window
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/* callback function is called whenever a new message arrives.

The only variable is received data */

Function callback(data)

begin

processedData ←algorithm(data);

/* broadcast the message to anyone who is connected */

rosPublish(processedData);

end

Function main()

begin

/* node initialization */

rosInit(node name);

/* subscribe to the topic with the master. ROS will call the

callback function whenever a new message arrives. The 2nd

argument is the queue size, in case we are not able to

process messages fast enough */

subscribe(channel name, message queue size, callback function);

end

Algorithm 5: Pseudocode for algorithm node
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/* callback function is called whenever a new message arrives.

The only variable is received data */

Function callback(data)

begin

processedData ←algorithm(data);

/* broadcast the message to anyone who is connected */

rosPublish(processedData);

end

Function main()

begin

/* node initialization */

rosInit(node name);

subscribe(channel name, message queue size, callback function);

/* rate object allows us to specify a frequency that we

would like to loop at. It keeps track of how long it has

been since the last call to Rate::sleep(), and sleep for

the correct amount of time */

loopRate ←setLoopRate(30);

/* repeat while we are connected to ROS network, SIGINT is

not received or shutdown was called by another part of the

application */

while rosOk() do

collectData();

data ←combineData();

direction ←evaluateData(data);

/* send command to sbot board */

sendCommand(direction);

loopRate sleep();

end

end

Algorithm 6: Pseudocode for robot control node
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Chapter 6

Experiments

In this chapter, we provide the results of our work. We ran several experiments indoor

and also outdoor (during the Robotour 2016 competition in Deggendorf). We tested

the robot with proposed algorithm and a new architecture and compared it with the

previous implementation.

6.1 GUIs explanation

In this section, we explain windows which contain data from the camera, Hokuyo

sensor, and Hokuyo algorithms.

In Figure 6.1, we can see one frame from the camera. There is nothing special in

this window, it just contains a plain picture, but we use it a lot in section, where we

explain Hokuyo GUI.

In the Figure 6.2, we can see data from

• Hokuyo sensor

• algorithms

• direction result

Hokuyo sensor data begin in the middle and end when beams hit the obstacle. The

beam is indicated by a grey line that ends with the turquoise circle (obstacle). There

is the wall on the left side on the Picture 6.2 and 6.1 which creates "turquoise line" on

that picture.

The previous algorithm implementation probabilities (yes or no) for directions are

in the picture with the red and green colors (red = obstacle, light green = free way
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Figure 6.1: Camera GUI

for direction i). Our new algorithm is drawn with turquoise and red circles. The red

circle is the direction with the highest probability of free way (the robot direction).

Turquoise circles have the lower probability than highest.

The y position of turquoise or red circles in the picture is the probability, that goes

from 0 to 1. 0 is at the bottom of the picture and 1 probability on top.

Figure 6.2: Hokuyo GUI
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6.2 Comparison

In this section, we compare our algorithm with previous in some sample situations. We

start our comparison with the simplest situation without obstacles to more complicated

with more obstacles, even the wall.

6.2.1 No obstacles

There are no obstacles in this simple situation. We take records from the previous

section that are showed on the Pictures 6.1 and 6.2. When we compare result from

our algorithm with the previous, there is almost no di�erence between results. That

means, there is almost no improvement in basic situations.

6.2.2 One near obstacle

In this example, we added one near obstacle in front of the robot. The situation is

shown on the Pictures 6.3 and 6.4 We can see that our algorithm recommended the

right most way. On the other hand, previous algorithm recommended only almost the

direct direction, that is not correct because there is an obstacle.

Figure 6.3: One obstacle, Hokuyo perspective
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Figure 6.4: One obstacle, camera perspective

6.2.3 Free space in the wall

In this situation, we created a wall with one empty space. Pictures for this situation

are 6.5 and 6.6.

The previous algorithm can not �nd the free space in the wall (on the right side).

The algorithm thought that there is not space in front of the robot.

On the other hand, our algorithm found the free space in the wall and robot went

through it.

Figure 6.5: Free space in wall, Hokuyo perspective
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Figure 6.6: Free space in wall, camera perspective

6.2.4 Near the wall

In this situation, we compare the behaviour of algorithms near the wall. As we see the

previous algorithm does not see any way. It is expected because the wall distance is

closer than minimal distance for the obstacle.

In comparison with our new probabilistic algorithm, we can �nd the way on the

right side because there is some free space which increases probability (not so high due

to the distance to the wall) on the right side.

Figure 6.7: Near the wall situation, Hokuyo perspective
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Figure 6.8: Near the wall situation, camera perspective
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Conclusion

In this thesis, we worked with an autonomous robot Smely Zajko. This robot is

a result of previous works [MN10] [Mor15]. We focused on integrating a new sensor -

laser range sensor into the set of existing sensors like GPS, camera and compass.

At �rst, we provided a basic overview of terms used in arti�cial intelligence and

robotics and we introduced the robot. We analysed the state of the robot before we

started working on it from hardware and software point of view.

We proposed a new algorithm for reactive obstacle detection and avoidance using

the laser range sensor (Hokuyo). We implemented this new approach into the existing

code and it cooperated with other sensors. Using this improved version of Smely Zajko,

we attended Robotour contest held in Deggendorf, Germany in September 2016.

Although we were quite successful and won the third place, we realised some short-

comings of our implementation. There was heavy rain during the contest and the main

problem with Hokuyo sensor were rain drops. Beams from the sensors were stricken

back into the sensor and were creating "imaginary" obstacle.

Based on these observations, we decided to relocate the sensor. There were also

problems with integration of our algorithm. Many parts of the code had low cohesion

(a class did a lot of jobs that do not have much in common) and very high coupling (a

class has a lot of dependencies) that caused some performance problems. That is why

we reimplemented software from the scratch and completely changed its architecture.

We described the process of reimplementation in the chapter Implementation. As

the main implementation technology we chose ROS framework that is more exible,

allows running multiple independent experiments, record and replay data from log �les

and is easy portable to another robot. In the chapter New approaches, we described

this framework and also further algorithms for obstacle avoidance.

In the chapter Experiments, we provided the results of our work. We compared

the results from original system with the results from our brand new implementation

and algorithm. We can conclude that our implementation was successful. The results

show that the robot is able to detect a more suitable path with our algorithm mainly

because we work with probability for each direction and not with the boolean values.

However, there is still some place for improvement and further research. We propose
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new ideas and improvements that can be implemented in the future work:

• Rewrite GUI s from OpenCv into Qt library

• Improve control with di�erent algorithms

• Change Sbot board into Raspberry Pi or Arduino

• Change the main computer into the embedded board like NVidia Jetson which

is capable for faster running operations on the graphic card (can increase neural

network performance) and also has several GPIOs for direct connection more

sensors

• Create GUI s which allow to change constants and algorithms during the run

• Create environment for tuning algorithms during the runtime
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Appendix A

Application

Application source codes, which we created in this work, are provided on attached

CD.
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