
COMENIUS UNIVERSITY, BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

LOCAL MAP FOR A ROBOT
FOR THE ROBOTOUR CONTEST

Diploma thesis

2019 Bc. Michal Fikar

COMENIUS UNIVERSITY, BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

LOCAL MAP FOR A ROBOT
FOR THE ROBOTOUR CONTEST

Diploma thesis

Study programme: Applied Informatics

Study field: 2511 Applied Informatics

Department: Department of Applied Informatics

Supervisor: Mgr. Pavel Petrovič, PhD.

Bratislava, 2019 Bc. Michal Fikar

68920162

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Michal Fikar
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: aplikovaná informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Local map for a robot for the Robotour contest
Lokálna mapa pre robota do súťaže RoboTour

Anotácia: Smelý Zajko je mobilný robot, ktorého cieľom je doručovanie nákladu
vo vonkajšom prostredí. Bol vyvinutý v predchádzajúcich troch diplomových
prácach a každoročne sa zapája do súťaže RoboTour. Jeho riadici systém
založený na platforme ROS využíva neurónovú sieť na rozpoznávanie cesty
na základe obrazu z kamery. Na globálnu navigáciu používa kompas, GPS
a mapu vonkajšieho prostredia. Lokálna navigácia je však naprogramovaná
ako jednoduchý reaktívny systém kombinujúci informácie z lidaru, globálnej
navigácie a kamery. Cieľom práce je rozšírenie softvérového riadiaceho
systému o nové črty. Napríklad, o lokálnu mapu, vytváranú z dostupných
senzorických dát, v ktorej si robot plánuje trajektóriu. Predpokladá sa inštalácia
druhého lidaru snímajúceho povrch chodníka. Očakáva sa účasť študenta
na nasledujúcom ročníku súťaže.

Literatúra: H. Choset, et.al.: Principles of Robot Motion, Theory, Algorithms, and
Implementations, MIT Press, 2005.
F. Duchoň: Lokalizácia a navigácia mobilných robotov do vnútorného
prostredia, Nakladateľstvo STU, 2012.

Vedúci: Mgr. Pavel Petrovič, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 06.10.2017

Dátum schválenia: 12.10.2017 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

iv

I declare that this Diploma thesis is my own work, using

only the sources listed in the bibliography and with help

of my supervisor

. .

Bratislava, 2019 Bc. Michal Fikar

Acknowledgments

I would first like to thank my supervisor Mgr. Pavel Petrovič, PhD. for his

help and advice with my thesis. I would also like to thank my family and

friends for their support during my studies.

v

Abstract

This thesis describes a new navigation system for robot Smelý Zajko that

takes part in Robotour contest - an outdoor delivery challenge. The described

navigation system is based on a local map that fuses data from various sensors

into one unified representation of nearby obstacles. We further propose 2

algorithms to determine the best course of action for the robot, based on

the state of the local map. The new navigation system outperforms the

old one, which often struggled with obstacle avoidance. Finally we evaluate

performance of the robot on the Robotour 2018 contest in Lednice, Czech

Republic.

Keywords: local map, outdoor navigation

vi

Abstrakt

Táto práca popisuje nový navigačný systém pre robota Smelý Zajko, ktorý sa

zúčastňuje súťaže Robotour, ktorej cieľom je doručovanie nákladu vo vonka-

jšom prostredí. Popisovaný navigačný systém pracuje na báze lokálnej mapy,

ktorá kombinuje dáta z rôznych senzorov do jednej spojenej reprezentácie

okolitých prekážok. Ďalej navrhujeme 2 algoritmy na určenie najlepšieho pos-

tupu robota v danom stave lokálnej mapy. Nový navigačný systém dosahuje

lepšie výsledky ako predchádzajúci, ktorý mal často problém vyhnúť sa prekážkam.

Na záver vyhodnocujeme výsledky robota na súťaži Robotour 2018, ktorá sa

konala v Ledniciach v Česku.

Kľúčové slová: lokálna mapa, navigácia vo vonkajšom prostredí

vii

Contents

1 Introduction 1

2 Problem overview 3

2.1 Lidar obstacle detection . 4

2.2 Camera obstacle detection . 5

2.2.1 Statistical approach . 6

2.2.2 Convolutional neural networks 7

2.3 Mapping . 8

2.3.1 Odometry . 8

2.3.2 Satellite navigation . 9

2.3.3 Optical tracking . 10

3 Previous solution 12

3.1 Robot description . 12

3.2 Logic and control . 13

3.2.1 Localization and routing 14

3.2.2 Steering and obstacle avoidance 14

3.2.3 Evaluation . 15

4 Design 17

4.1 Local map . 17

viii

CONTENTS ix

4.1.1 Odometry . 18

4.1.2 Lidar . 18

4.1.3 Camera . 19

4.2 Robot navigation . 19

5 Implementation 21

5.1 Hardware upgrades . 21

5.2 Local map . 22

5.2.1 Lidar data projection 23

5.2.2 Camera data . 23

5.2.3 Odometry . 27

5.3 Navigation . 27

5.3.1 Area calculation . 27

5.3.2 Radial approach . 29

5.3.3 Parallel approach . 29

6 Results 31

6.1 Robotour . 31

6.2 Algorithms . 33

7 Conclusion 34

A Local map visualization 36

B Code listings 38

Chapter 1

Introduction

Autonomous mobile robots are slowly becoming parts of our daily lives. Some

are more common, such as the robotic vacuum cleaners that can be seen help-

ing with chores in many households. Others are still in the near future, like

the delivery drones Amazon is planning to use. Probably the most prominent

branch of autonomous mobility applications nowadays are self-driving cars.

Manufacturers like Tesla are including advanced driver assistance features

such as automatic steering, adaptive cruise control and automatic parking.

It might be even possible that fully self-driving cars will become reality in a

matter of years once legal and technical issues get solved.

Autonomous mobility challenges are also staples of many robotics compe-

titions worldwide, from simple line followers to advanced outdoor navigation

challenges. The latter category also includes the Robotour contest - outdoor

delivery challenge organized by Czech robotics community robotika.cz. Goal

of the contest is to successfully navigate park roads and carrying a 5 kg load

(usually a beer keg) for bonus points.

Smelý Zajko is an autonomous outdoor robot built for the Robotour con-

test. Developed at the Department of Applied Informatics since 2010 as the

1

CHAPTER 1. INTRODUCTION 2

subject of multiple theses and smaller projects, this robot takes part in the

contest annually.

Subject of this diploma thesis is to create a new navigation system for

Smelý Zajko, based on local map of the environment. The map will hold

recorded data from various sensors and determine how to proceed in any

given situation. Chapter 2 will overview the outdoor navigation problem

and common approaches to solve it and chapter 3 describes the hardware

and software solutions on Smelý Zajko at the start of this thesis. Following

chapters describe our local map design and details of the implementation.

Concluding, we will discuss the performance of the robot on the 2018 Robo-

tour contest and evaluate areas for improvement.

Chapter 2

Problem overview

Robot localization and environment mapping are two closely related topics.

Mapping refers to construction of a map of some sorts, from grids of nu-

merical values to topological representation of spaces. Localization is the

process of finding position of an agent in a given space (or map), and further

maintaining it as the agent moves.

Simultaneous localization and mapping (SLAM) refers to a problem,

where an agent needs to solve both of these problems at once. These are

most often found with vehicles, such as self-driving cars, robotic vacuum

cleaners or unmanned drones.

In this chapter we will cover mapping and localization techniques related

to our problem, navigating an outdoor mobile robot. First we will exam-

ine obstacle detection methods using laser rangefinding and camera image

analysis, and then mapping.

3

CHAPTER 2. PROBLEM OVERVIEW 4

2.1 Lidar obstacle detection

Lidar (combination of words light and radar, later made into an acronym

for Laser Imaging, Detection And Ranging) is a distance measuring method

based on shinig a pulsing laser on a target, and measuring the reflected

pulses with a sensor. Modern solutions usually mount the devices in rotating

housings, allowing them to measure distances in a 2D plane or even complete

3D space.

Gonzalez et al. [GOH93] describes a method to build a local map of indoor

environment of an indoor robot from data provided by laser rangefinders.

They define local map as the representation of environment, as perceived by

the robot from a given pose (position and orientation). On the other hand,

global map refers to the whole environment, in which the robot operates.

Authors break down the global map building process into 5 simple steps:

build a map given the initial robot pose, move to next location, determine

new pose, build new local map for the new pose and merge to the original.

As a result, they are trying to obtain a map built from 2D line segments,

approximating the shape of obstacles.

In order to create local map (fig. 2.1d) for a given pose, authors first need

to filter out the sensor data (fig. 2.1a) to get rid of unreliable measurements.

Filtered data are then broken down into clusters based on distance between

points and then further segmented into groups suitable for line fitting (fig.

2.1b).

The segmentation is calculated by a recursive algorithm. At start, first

and last points of a cluster are connected with a single line. Then the point

with the maximum distance from this line is found and the cluster is split in

two parts. The process then repeats for the pars, until the furthest points

are close enough to their respective line segment (fig. 2.1c). The value of this

CHAPTER 2. PROBLEM OVERVIEW 5

(a) Scan data (b) Filtering and clustering

(c) Recursive splitting (d) Final local map

Figure 2.1: Building local map from sensor data [GOH93]

threshold parameter needs to be carefully selected based on the properties of

sensor and environment.

2.2 Camera obstacle detection

Gini and Marchi [GM02] developed a indoor robot navigation system based

on image from a single camera. Camera mapping offers multiple advantages

compared to laser rangefinding methods. Biggest difference is in cost of such

system, as even cheap cameras can provide sufficient quality of images. They

are also able to use more features for mapping, such as detecting obstacles

based on textures. On the other hand, their reliability can be worse than

laser scanners.

In order to properly use a camera for navigation, it needs to be calibrated

first. Pinhole camera model allows for conversion of image coordinates into

CHAPTER 2. PROBLEM OVERVIEW 6

world space, but consideration for other camera characteristics (such as focal

distance or its position and rotation in the world) is needed. To actually

calibrate the camera, we need to take a picture of an object of known size

and position in relation to the camera and measure its position in the image

space. From these values the calibration matrix can be solved and then used

to find world space positions of image features.

2.2.1 Statistical approach

In a known environment, distinguishing road from obstacles can be done on

pure statistical basis. One can analyze sample images to find out important

features for given areas (roads, sky, trees, buildings ...) and then use them to

label new images. There are many possible features that can be used for this,

from simple ones such as pixel colors to more advanced textures, gradients

or combinations of other features.

Choosing correct one depends mostly on the conditions in which the al-

gorithm will run. For example separating sidewalk from grass can be easily

done by pixel color in HSL color space. Dark sidewalk will have low lightness

and grass will be dominantly of green hue.

In order to detect floor from obstacles, [GM02] decided to perform statis-

tical analysis based on textures. They calculate 4th order moments for each

RGB value of a pixel. Since the 4th order moment has high values when

there is a sharp change of colors, it can be used to detect areas where the

obstacles meet the floor.

This process is computed only for some reference pixels to save time, and

then interpolated for the other pixels. After the computation a new image

is constructed from these values, transformed into HSL color space, filtered

and binarized by a dynamic threshold to obtain floor and obstacle regions.

CHAPTER 2. PROBLEM OVERVIEW 7

Figure 2.2: Example of CNN architecture [AGLL12]

2.2.2 Convolutional neural networks

Convolutional neural networks are a powerful tool for image processing tasks.

Using the convolutional layers (fig. 2.2), they are able to analyze areas

of the image with context and with sufficient depth also identify higher-

level features. Simple obstacle detection can be equivalent to basic image

segmentation, but deeper CNNs can be easily trained to also classify the

obstacles (pedestrians, cars, trees...).

There are multiple approaches to road segmentation (distinguishing road

surface from obstacles) from images. Common models use pixel level fea-

tures (color, textures) to group areas of the image [AGLL12], but these have

certain issues. Color approaches struggle in different lightning conditions

and textures rely on repeating features, such as road markings. Alvarez et

al. propose a new kind of texture descriptor to obtain maximal uniformity

in road areas [AGLL12] and create a CNN model to segment images into

horizontal areas (road), vertical areas (obstacles) and sky.

Their texture descriptor tries to minimize variance (estimated from a his-

togram) of a small area. Histograms for many different color planes (such

as intensity or RGB color channels) are considered, and their minimal vari-

CHAPTER 2. PROBLEM OVERVIEW 8

ance linear combination is calculated. The weights are then used to evaluate

pixels of the original image, to calculate likelihood of belonging to the road

surface.

2.3 Mapping

Gini and Marchi [GM02] use a grid map of numerical values, representing

how much the robot "trusts" them to be free, obstacle or unknown. The size

of the grid is chosen to provide best results based on the dimensions of the

robot.

The robot fills the map with data obtained from sensors, assigning these

"trust" values. When the robot moves and detects new obstacles, the map is

enlarged and new data is added.

In order to properly merge these new values to the map, the movement of

the robot needs to be tracked. In the following sections we will cover using

motion sensors (odometry), satellite navigation and optical tracking.

2.3.1 Odometry

Odometry is a method of measuring movement relative to starting point us-

ing motion sensors (also referred to as dead reckoning). Solutions range from

simple such as using optical sensors to measure wheel rotation to more ad-

vanced methods using gyroscopes, compasses and accelerometers. Odometry

is fairly accurate over small distances, but gets increasingly inaccurate over

longer distances.

Chong et al. [CK97] classify odometry errors as systematic (uncertain-

ties in wheel diameters or their distance) and non-systematic. Systematic

errors can be usually solved by calibrating the odometry system, for example

CHAPTER 2. PROBLEM OVERVIEW 9

having the robot drive a predetermined test path and adjusting the system

to account for inaccuracies. Non-systematic errors cover other sources, such

as factors external to the odometry system (wheel slipping, floor roughness

etc.).

Authors further propose robot design to minimize systematic errors. This

robot has two independently driven wheels, as well as two extra odometry

wheels. The odometry wheels are sharp-edged (to reduce wheel base uncer-

tainty) and mounted on linear bearings, allowing them free vertical motion

(to reduce effects of slippage due to weight load).

2.3.2 Satellite navigation

Satellite navigation can be used to determine robot’s position and speed, but

its not accurate enough to be reliably used as only means of tracking. Envi-

ronmental conditions (cloud cover, proximity of obstacles such as buildings

or trees) can severely degrade its performance or even disable it completely.

Due to it’s relatively small precision (only a couple meters at best) it’s used

almost solely for outdoor localization.

[PPU02] describes localization algorithm based on Kalman filtering that

combines data from a GPS unit with map data and inertial sensors to calcu-

late motion of an outdoor robot.

Authors identify GPS as the ideal means of localization in larger open

outdoor areas (fig. 2.3), since it solves many of the problems that can trouble

other types of sensors. Namely, ultrasonic and laser rangefinders have trouble

with wind or rain and relatively short ranges.

Accuracy of GPS sensors is analyzed, showing that not the number of

satellites, but their geometrical position of satellites in the sky is a good

measure of precision. Another important aspect of GPS error is the way it

CHAPTER 2. PROBLEM OVERVIEW 10

Figure 2.3: Comparison of actual robot path (circle), odometry (dashed line)
and GPS (plus) [PPU02]

changes over time - fast changing errors can be easily filtered out but on the

other hand slower errors that can’t provide smoother movement.

They further describe the localization system for ATRV-Jr robot. The

robot has differential drive (wheels on opposite sides can be controlled inde-

pendently) and is equipped with a variety of sensors (motor rotation sensors,

laser rangefinder, inertial measurement unit and GPS). Their algorithm uses

inertial data as a precise measure of movement, correcting the inaccuracies

of GPS.

2.3.3 Optical tracking

Optical tracking, also called visual odometry, is process of determining po-

sition, rotation and their changes based on camera images. Optical tracking

works best in a calibrated stereo camera setup, but can be used even with

one camera (albeit with less degrees of freedom).

CHAPTER 2. PROBLEM OVERVIEW 11

[NNB04] describes visual odometry algorithm capable of working both

with mono and stereo camera configurations. The algorithm detects point

features in the video feed and matches them between pairs of frames. The

feature points are matched based on their distance in the image to produce

tracks over time. Tracks are then used to estimate the geometry of the

environment. The estimation algorithms are the only difference between

mono and stereo camera algorithms. Once the geometry is calculated, the

camera motion is estimated using RANSAC.

The algorithm was tested on a vehicle with two cameras and compared

against navigation system consisting of GPS and IMU. The visual system

was able to outperform inertial navigation and able to provide very accurate

position information even after driving hundreds of meters.

Chapter 3

Previous solution

The following sections will describe the construction and software of the robot

Smelý Zajko at the beginning of work on this thesis. First will be hardware

and software specifications, followed by description of the algorithms control-

ling the robot and evaluation of its performance.

3.1 Robot description

Smelý Zajko was incrementally developed over the past 5 years of Robotour

contest as part of multiple projects and theses. It has a custom-built chassis

from plywood and aluminium with 3 wheels - 2 motorized (differential drive -

each wheel powered independently) and one pivoting. The robot is controlled

by a laptop which runs most of the software. The sensor suite consists of

following:

• 7 Ultrasonic sensors (2x SRF-04 forwards, 3x HC-SR04 back and 1

HC-SR04 on each side)

• GPS module

12

CHAPTER 3. PREVIOUS SOLUTION 13

• Inertial measurement unit (HMC6343)

• Lidar (Hokuyo UST-10LX, mounted at the front of the robot, horizon-

tal 180° field of view)

• Optical wheel rotation encoders on motorized wheels (Parallax Motor

Mount & Wheel Kit)

• High field-of-view camera

• Infrared distance sensor (Sharp IR sensor 2Y0A21 for payload detec-

tion)

GPS, IMU and camera are connected to the laptop via USB and Lidar

uses ethernet connection. Encoders and ultrasonic sensors are managed by

two Arduino Nano boards (one used solely for odometry encoders and one for

ultrasonic sensors and motor control). They communicate with one another

over custom parallel connection, and with main control laptop via serial over

USB.

Robot is controlled via ROS Kinetic (Robot Operating System) running

on Ubuntu 16.1 on the laptop. The ROS modules are written in C++, with

the exception of camera image processing, which is done in Python. Camera

is accessed via OpenCV and the images are analyzed by neural network

created in Keras and Theano.

3.2 Logic and control

The robot control is split into multiple ROS modules, which can be split into

3 logical groups: Sensor, control and visualization. Sensor modules interact

with sensors on lower levels and publish their data into ROS. Control modules

CHAPTER 3. PREVIOUS SOLUTION 14

subscribe to sensor data and use it to perform calculations. Visualizations

can be done directly from sensor data or from computed control outputs.

3.2.1 Localization and routing

Since the robot operates in a known environment, map of the area is pre-

pared ahead of time. Robot uses data from Open Street Maps to construct

a network of allowed roads and walkways. Approximate position is obtained

by GPS, which is then projected onto the nearest road to reduce GPS inaccu-

racies. Target points (loading, unloading or end zone) have their coordinates

also defined.

Graph of roads is constructed in order to find best path to the target

point. Pathfinding is done by a basic breath first search algorithm. Perfor-

mance is not a big issue since the contest areas are relatively small. Path

consist of line segments (equivalent to segments from OSM) and is stored

in a list. As the robot advances further on this path, passed segments are

removed. The path is recalculated if the robot finds itself on a segment which

is not part of the path (either due to navigation or GPS errors).

3.2.2 Steering and obstacle avoidance

Steering is controlled by a central algorithm, combining data from localiza-

tion and sensors. Robot knows its current bearing from the compass, and

target bearing is calculated from the path to target. An circle is centered

on the robots current position, and its intersection with the target path is

found. At any point in time, the robot tries to directly reach this point.

Near sharp turns or crossroads the intersection point can be on the next

path segment, which should result in smoothly steering the robot around the

corner. This approach proved to be inefficient, since GPS inaccuracies were

CHAPTER 3. PREVIOUS SOLUTION 15

large enough to shift the detected position to another path near crossroads.

As a result, the robot often tried to turn too early or too late and ended up

trying to leave the road.

GPS issues were meant to be compensated by camera road detection, but

this system wasn’t working properly during our testing. The output of the

image segmentation was extremely noisy, giving hardly any different results

for roads and grass. If the system worked properly, it would steer the robot

away from the grass, making it stay on the road until crossroad was reached

and turning would be possible.

Lidar is used for obstacle avoidance, intended to detect vertical obstacles

(such as benches, other robots or pedestrians). Its algorithm uses a PID

controller to smoothly steer robot away from upcoming obstacles.

Since the robot is penalized for hitting any obstacle, ultrasonic sensors

are used as emergency stops. If they detect any object in close proximity

forwards, all other robot controls are overridden and robot is stopped. Since

these kind of obstacles are likely to be pedestrians, the robot first waits for

them to move out of the way, and after couple seconds tries backing up,

turning and driving around.

3.2.3 Evaluation

Although Smelý Zajko was able perform well in previous Robotour competi-

tions (even winning it in 2014), subsequent changes to hardware and software

caused parts of it’s control system to malfunction. As a result, the robot was

only able to successfully navigate simple areas and avoid some obstacles.

Navigation system couldn’t compensate for GPS inaccuracies and camera

obstacle detection proved to be completely unreliable.

The robot was unable to distinguish walkways from grass, which fre-

CHAPTER 3. PREVIOUS SOLUTION 16

quently ended up with it getting stuck. Ultrasonic sensors detected tall grass

as obstacles - stopping the robot while it was driving along the edge of the

path. After waiting for several moments the robot reversed to try navigating

around the obstacle, but it often drove right back into the grass.

Besides improvements to hardware (new GPS, camera...) and general

software bug fixes, we decided to implement a new steering system using

a local environment map. This map should fuse all known obstacle data

(mainly from lidar and camera) and allow the robot to plan its path around

obstacles while staying on the roads.

Chapter 4

Design

The topic of our thesis is to create local map of environment the robot op-

erates in, that will fuse obstacle data form sensors. Robot will be able to

use this map to plan its path along the road, safely avoiding obstacles and

navigating around corners.

This chapter will cover our design of the local map, interpretation of

sensor data and navigation algorithms operating over this map. Detailed

descriptions will be covered in the chapter 5.

4.1 Local map

Our solution will use a grid based local map. Each cell on the grid will

represent a square section from the robots surrounding area. The cells will

have assigned numerical values, representing likelihood of being obstructed.

As the robot moves, its position in the map will be updated, so that new

data can be recorded in relation to previous information.

Since our goal is not to map the whole environment but only to track

recent surroundings (for navigation and obstacle avoidance), we decided to

17

CHAPTER 4. DESIGN 18

make the map toroidal. Toroidal map lets the system remember recent obsta-

cles in case it needs to backtrack while not requiring large amount of memory.

If the robot moves long enough in a given direction, it will eventually start

overwriting old data.

4.1.1 Odometry

The movement of the robot will be tracked using wheel rotation sensors.

Using known dimensions of the robot (wheel diameter and their distance),

the movement of the robot can be calculated from the wheel rotations. The

map will store robots position and rotation (in map space) and update it in

real time as new rotation data are available.

Inaccuracies if rotation sensor odometry aren’t that concerning in our

case, because we only need to track robots position over small (but moving)

area of the map.

4.1.2 Lidar

Original unit on the front detects obstacles ahead of the robot (forward,

180°, horizontal, 10 cm above ground). This lidar can detect most vertical

obstacles (pedestrians, benches, walls) but can struggle with uneven terrain

and obstacles that are low to the ground.

As part of hardware improvement of the robot, it should be equipped with

a second lidar unit, which will be mounted on top of the robot (360°field of

view, mounted 70 cm high). It will be tilted 10°forwards, so that flat ground

will be detected at a distance of approximately 4 meters. This should allow

it to detect curbs along the road, as well as tall obstacles to the sides and

rear of the robot.

CHAPTER 4. DESIGN 19

4.1.3 Camera

We decided to replace the original camera on the robot with a smartphone to

correct previous image quality problems. Nowadays, even affordable Android

smartphones have decent camera quality and are easy to program, making

them suitable replacement. The smartphone will run Android app, that will

capture images and transfer them to the computer.

The main use of camera images is to differentiate drivable and non-

drivable surfaces (most often paved road from grassy areas) and help in

detecting vertical obstacles (benches, lampposts, pedestrians etc.). A neural

network to perform this segmentation task on Smelý Zajko is being developed

as part of separate project, so we decided to implement a simpler, statistical

approach based on HSV color space.

4.2 Robot navigation

Goal of the local map navigation is to steer the robot along a desired road,

while effectively avoiding obstacles. Target direction (azimuth of the road)

will be obtained using the global navigation system from the previous al-

gorithm - using GPS to locate the robot in the environment map, finding

the best path to destination and determining target headings from road seg-

ments. We are considering two different algorithms to calculate the heading

the robot should move in at any given point.

The first algorithm evaluates corridors (rectangular areas the robot would

drive over when moving in a given direction) placed radially around the

robot based on the amount and distance of obstacles. In order to emphasise

obstacle avoidance, detections that are closer to the robot influence the value

more significantly. The final corridor values are further weighted based on

CHAPTER 4. DESIGN 20

their angle in relation to the target direction. When the robot moves to the

end of the current road segment, the target direction is interpolated between

azimuth of the current and the next segment. Direction of the corridor with

best value is then returned, to be used by the steering system.

Second algorithm tries to detect drivable surface by finding the rectangle

areas aligned with the known road direction. The process works similarly to

corridors from the first algorithm but instead of originating from the robot at

different angles, the areas are placed parallel to each other in lanes, oriented

in the direction of the road. Robot is then steered to drive along the center of

the best lane to stay as far as possible from any obstacles. When switching

from one road segment to another, lanes are calculated for both of them.

Navigation is performed using the lanes from current sector until the following

lanes find a suitable road.

Chapter 5

Implementation

This chapter will cover technical aspects of the implementation. Starting

with hardware upgrades to sensors and processing power, followed by de-

scriptions of different parts of the local map system and navigation.

5.1 Hardware upgrades

During the development of the local map, Smelý Zajko also went though cou-

ple hardware improvements (fig. 5.1). Obstacle detection capabilities were

enhanced with addition of second lidar (Slamtec RPLIDAR A2), new GPS

sensor (Navilock 8022 with Galileo and Glonass capabilities) improved pre-

cision of localization and Nvidia Jetson TX2 (Embedded computing board

based on Nvidia Tegra X2 architecture for machine learning applications)

boosted neural network capability for camera image analysis. Jetson is con-

nected to the control laptop by ethernet and the communication is handled

by ROS.

21

CHAPTER 5. IMPLEMENTATION 22

Figure 5.1: Smelý Zajko with upgraded hardware during a testing session.
RPLIDAR A2 top center, Navilock 8022 top left and Jetson TX 2 mounted
below the laptop

5.2 Local map

The local map will be stored in a two-dimensional array of floating-point

values. Each cell represents a square area in the world surrounding the robot

and its value is a measure of confidence that the area is obstructed (1 meaning

certainly obstructed and 0 free).

Toroidal properties of the map will be accomplished by access functions.

When trying to retrieve or change data at a given position (even outside of

bounds of the array), the actual index of cell in the array will be calculated

using modular arithmetic.

The map will be fixed relative to the world space and robot’s pose (posi-

tion and rotation) will be stored relative to the map. The pose will serve as

base point to place sensor data into the map and also to perform navigation

calculations.

CHAPTER 5. IMPLEMENTATION 23

5.2.1 Lidar data projection

The lidars output obstacle data in form of rays - angles and measured dis-

tances. The rays will be filtered, removing values that are too far (empty

space) or too close (measurement errors or robot detecting itself), and trans-

formed into the map space - translating and rotating them to account for

robots pose and mounting locations of the sensors on the robot. Rays from

the angled lidar also need to be projected into horizontal plane.

In order to focus on avoiding collisions, if a map cell would be marked

obstructed by lidar, nearby cells are marked as well (see listing B.2). This

way the representation of obstacles is larger than necessary, which helps

correct measuring inaccuracies. As a side effect this also creates a "buffer

zone" around the obstacles, preventing accidental collisions when navigating

around them.

5.2.2 Camera data

As its main camera, Smelý Zajko will use an Android smartphone running a

custom app. To simplify the app development, we started with an Android

Camera2 API sample app1, which already contained basic camera configura-

tion (setting desired resolution, enabling features such as auto focus etc.).

The basic app was extended with a simple Java server, that broadcasts

captured images to all connected clients. Communication between the smart-

phone and computer is carried over USB, using virtual network that is created

by the phone when using USB tethering (sharing phones internet connection

with the PC).

Images from the camera will be transformed into HSV color space and

1Android Camera2Basic Sample from https://github.com/googlesamples/
android-Camera2Basic

https://github.com/googlesamples/android-Camera2Basic
https://github.com/googlesamples/android-Camera2Basic

CHAPTER 5. IMPLEMENTATION 24

Figure 5.2: Histogram of road surfaces. Hue on vertical axis, saturation on
horizontal. Shade of pixels represents occurrence in data set.

then processed by our color analysis algorithm. Resulting greyscale obstacle

image need to be further transformed to fit into the local map.

Color analysis

In order to obtain an efficient and reliable segmentation model, we decided to

perform color space on 338 sample photos from the park surrounding Castle

Lednice (location of the 2018 Robotour contest).

Annotated photos were used to create a histogram (fig. 5.2) based on the

HSV color space. Pixels that correspond to drivable surface were binned by

hue and saturation (value proved to be of little significance due to shadows).

After normalization, the histogram values serve as probabilities that a given

hue-saturation pair is road or obstacle.

When analyzing a camera image (fig. 5.3), the algorithm uses the learned

histogram values to create a greyscale obstacle image - each pixel is assigned

value based on its color.

CHAPTER 5. IMPLEMENTATION 25

(a) Original image (b) Oversaturated image

(c) Detected road surface

Figure 5.3: Road detection process. Algorithm processes original image (a)
using histogram (fig. 5.2) to detect road surface (c). Oversaturated image
(b) shows that the road is mostly red/magenta/blue hue.

CHAPTER 5. IMPLEMENTATION 26

(a) Original image (b) Detected obstacles

(c) Perspective transformation

Figure 5.4: Transformation of image to local map. Original image (a) is
evaluated (fig. 5.3), inverted to show obstacles (b) and transformed so that
pixels represent local map cells (c)

Perspective transformation

In order to transform the images into obstacle maps (fig. 5.4), they need to

be projected onto the map (ground) plane so that they can be fused with

other sensor data. We calculated perspective transformation based on the

properties of our smartphone camera and its mounting position.

Result of this transformation is a low-resolution image (fig. 5.4c), where

each pixel represents single cell in the local map. Values in this image follow

the same standard as local map cells (greyscale value from 0 to 1 is equivalent

to the measure used to describe obstacles in map) and thus can be easily

added to the map using matrix transformations to handle robots position

and rotation.

CHAPTER 5. IMPLEMENTATION 27

5.2.3 Odometry

The main method of odometry on Smelý Zajko are optical rotary encoders

mounted on its wheels. These track rotations of each wheel, and thus the

distances each wheel moved. Since Smelý Zajko uses differential drive, we

can use these distances to calculate its trajectory.

There are 2 common cases to consider - going straight and pivoting in

place (both wheels are moving essentially same distances, but either the

same direction or opposite). For these we only need to calculate the distance

travelled and angle pivoted respectively.

When the wheels are moving arbitrary distances (and directions), the

robot is driving along an circular arc. Since the wheelbase of the robot is

known, we can find the center and angle of the arc. Finally we need to

calculate the change in position between the beginning and end of the arc

and update the robots position in the map.

Implementation of this function is show in appendix B, listing B.1.

5.3 Navigation

Both the radial and parallel approaches to navigation described in section 4.2

work on the same basic principle. First, rectangular areas are created, then

they are scored by their obstacle values and finally the best area is selected

and the robot is steered accordingly.

5.3.1 Area calculation

The algorithm creates areas based on a origin point, direction, length and

width. This approach serves to simulate the robot driving along the given

CHAPTER 5. IMPLEMENTATION 28

direction, taking into account its width. The area algorithm operates as

follows:

1. Find coordinates of the corner points of area with given properties.

2. Create an axis aligned bounding box of the area in map based on the

corner points.

3. Iterate over cells in the bounding box, checking if they belong to the

area:

• Distance of the cell from center line of the area must be lower than

width of the area.

• Distance of the cell from the origin point of the area must be lower

than the length of the area.

4. Calculate score for cells that belong and add it to total area score.

5. Normalize the score based on number of cells in the area.

The cell scoring equation 5.1 gives higher score to empty cells and weights

them by distance from the origin point. The weighting gives more significance

to cells closer to the robot, emphasising avoidance of close obstacles.

cellScore = (1 − cellV alue) ·
(

1 − cellDistance

areaLength

)
(5.1)

The score of the entire area needs to be normalized, because areas that

are rotated at certain angles can cover different number of cells, which would

put them at a disadvantage.

CHAPTER 5. IMPLEMENTATION 29

5.3.2 Radial approach

In the radial algorithm, the areas are generated in all directions around the

robot (illustrated in fig. 5.5a), representing paths (corridors), the robot could

take from its current position. Since the primary goal is to navigate the robot

along a segment of the road, the scores of all the corridors are weighted based

on their angle relative to target direction (eq. 5.2). This approach lets the

robot veer off course to avoid obstacles, while prioritizing movement forwards.

areaScore = areaScore ·
(

1 − angleDifference

π

)
(5.2)

Transitions from one segment to another (turns, intersections etc.) are

handled by linear interpolation. Once the robot is close to the end of a

segment (distance calculated from GPS), the navigation target direction is

interpolated between the directions of current and next road segment.

Result of the algorithm is the direction of the best area, which is then used

as target direction for the robots steering. In open spaces with no obstacles,

the resulting direction will be the same as direction of the road segment (due

to angle weighting). If there are obstacles in front of the robot, the corridors

that go around them will have better scores, steering the robot around the

obstacles.

5.3.3 Parallel approach

The parallel algorithm generates areas aligned with the road segment direc-

tion, placed next to each other in front of the robot (fig. 5.5b). This approach

weights the areas based on their offset from the robot, prioritizing lanes that

are closer. If there is an obstacle in front of the robot, another lane will be

chosen and the robot will turn to move to the new lane.

CHAPTER 5. IMPLEMENTATION 30

(a) Radial approach (b) Parallel approach

Figure 5.5: Illustration of the two algorithms. Red grid cell shows robot
position, green cells obstacles and blue rectangles the areas created by algo-
rithms

When navigating into next segment, the algorithm creates additional set

of lanes for the new direction. These are evaluated independently from the

original areas, and if a sufficiently good lane is found the algorithm starts

following it. As long as there aren’t any good lanes for the new segment,

the algorithm supposes that the robot hasn’t reached the new road yet, and

continues using the old directions.

Chapter 6

Results

In this chapter we will discuss performance of Smelý Zajko on the 2018

Robotour contest and evaluate the algorithms.

6.1 Robotour

Smelý Zajko competed in the 2018 Robotour contest in Lednice, Czech Re-

public. Goal of the contest was navigating in the gardens of Lednice Castle

and delivering a payload. First the robots need to reach given loading point,

where a 5 litre keg is loaded. Afterwards they need to travel to unloading

point and finally to a finish zone.

The contest conditions proved to be challenging for many robots, includ-

ing Smelý Zajko. Out of 11 contestants (fig. 6.1), only 4 robots managed to

successfully navigate to the loading zone [rob]. Our most successful round

ended approximately half-way to the loading point.

One of our more significant problems arose from construction of Smelý

Zajko. The wheels are fairly narrow (approximately 4cm), which proved

a problem on gravel walkways in Lednice Castle gardens and especially on

31

CHAPTER 6. RESULTS 32

Figure 6.1: Robots that took part in Robotour 2018 [rob].

slopes. All 4 rounds of the contest were unfortunately starting from the

same location where driving over slope was required, which proved to be

too challenging for our robot. Wheel traction was acceptable during testing

runs before the contest, but light rain and pedestrian traffic during the day

degraded the surface. Smelý Zajko often experienced wheel slipping, which

made odometry almost completely unreliable. The bumpy terrain further

caused problems for lidar obstacle detection, detecting ground surface due to

the robot rocking while moving.

Second major issue was caused by the camera image system, which wasn’t

properly tested before the contest. Analyzed images contained a lot of dif-

ferent visual artifacts, that made the image very noisy and unreliable. After

further analysis we identified the cause of artifacts as inaccuracies in floating-

point calculations used to transform camera images into HSV space. These

aritfacts showed up when running the HSV transformation on the Jetson

CHAPTER 6. RESULTS 33

TX2, but not during development on PCs. This led us to believe the arti-

facts were caused by different floating-point math implementation on hard-

ware level (as our development computers run on x64 architecture and Jetson

on ARM).

During the contest, only the radial approach to local map navigation was

implemented, and it was also affected by these issues. Reliable odometry data

are crucial to keep the map synchronized as the robot moves, and camera

images are the main way of distinguishing road surface from grassy areas.

Apart from the technical issues, the radial navigation algorithm worked

well. Appendix A shows visualization of the local map during one of testing

runs.

6.2 Algorithms

The radial approach to navigation proved to be decent at avoiding obstacles

such pedestrians, it had harder time navigating through sharp turns. This is

caused by the target direction interpolation when changing segments, which is

reliant on accurate GPS position. Park ways can often be only couple meters

wide, as is the maximum accuracy of GPS. In worst case, the algorithm

performs the turn too early or too late due to GPS inaccuracy, causing the

robot to face the edge of the road with little information on how to proceed.

The parallel algorithm fairs better when navigating through turns, but

the lane changing approach to obstacle avoidance struggles with obstacles

that are close by (which is often the case when it comes to pedestrians or

other robots). Creating a new algorithm, that will combine the obstacle

avoidance of radial corridors with sharp turn handling of lanes should result

in a more reliable navigation system.

Chapter 7

Conclusion

Smelý Zajko went through many hardware and software improvements. Lo-

calization and obstacle detection was improved with new GPS sensor and

lidar. Camera system was replaced, letting the robot use regular Android

smartphone instead of dedicated camera, and the image processing power

was improved with addition of Nvidia Jetson TX2 embedded computer.

The old navigation logic was replaced with a new local map, capable of

storing data from multiple sensors and deducting the best course of action

based on the detected obstacles. Although the current versions of the navi-

gation algorithms aren’t completely reliable, they could be merged into one

improved algorithm.

There are also further plans to improve Smelý Zajko, outside of this thesis.

A new, dual lens Stereolabs ZED Mini camera can be mounted and used for

optical odometry, as well as provide point cloud data to improve obstacle

detection. The Jetson TX2 board is capable of running more than just

our color-based image analysis and could be used to integrate deep neural

networks into the control logic of the robot.

Even though Smelý Zajko wasn’t able to complete the objective of the

34

CHAPTER 7. CONCLUSION 35

2018 Robotour contest, but the improvements it went through were signif-

icant. It’s very likely that it will take part in coming years of the contest,

and maybe even end up winning it again.

Appendix A

Local map visualization

Robot is located in the center of the visualization (figure A.1), the black arrow

showing its current heading (small red arrow is compass north for reference

purposes). The solid green areas are tall grass around the road, detected by

lidar. Light green cone in front of the robot is projection of camera data,

showing false obstacles caused by image artifacts. Blob of blue points around

the robot visualizes values for corridors in all directions - the further they are

the better.Shorter blue arrow shows target direction (current road segment),

which influences angular weighting of the scores. The chosen direction (best

corridor) is displayed by the big red arrow.

36

APPENDIX A. LOCAL MAP VISUALIZATION 37

Figure A.1: Visualization of local map and radial algorithm during Robotour.

Appendix B

Code listings

This appendix contains listings of some key functions from the local map al-

gorithm. Complete source code can be found in the project’s GitHub repos-

itory: https://github.com/Robotics-DAI-FMFI-UK/smely-zajko-ros/

Listing B.1: Calculation of new pose from wheel rotations

void LocalMap :: updateRobotPosition_ (long L, long R, bool force) {

L = -L;

R = -R;

double dL = wheelCircumference * (prevTicksL - L) / ticksPerRotation ;

double dR = wheelCircumference * (prevTicksR - R) / ticksPerRotation ;

// don ’t update on small changes

if (! force && (fabs(dL) + fabs(dR) < minUpdateDist)) return ;

prevTicksL = L;

prevTicksR = R;

double d = (dL + dR) / 2;

double turnRatio = 2;

if ((fabs(dL) >= 1.0) || (fabs(dR) >= 1.0)) {

turnRatio = dL / dR;

}

double newX , newY , newAngle ;

38

https://github.com/Robotics-DAI-FMFI-UK/smely-zajko-ros/

APPENDIX B. CODE LISTINGS 39

if (fabs(turnRatio - 1.0) < straightMovementThreshold) {

// straight

newX = posX + d * sin(angle);

newY = posY + d * cos(angle);

newAngle = angle ;

} else if ((dL * dR < 0) && (fabs(fabs(dL) - fabs(dR)) < 0.3)) {

// rotate along center

newAngle = angle + dL / (2.0 * wheelDistance);

} else if (dL != dR) {

// circular trajectory

int centerRight = 1;

double r1;

if (fabs(dR) > fabs(dL)) {

centerRight = -1;

r1 = wheelDistance * dL / (dR - dL);

} else {

r1 = wheelDistance * dR / (dL - dR);

}

double r = r1 + wheelDistance / 2.0;

double beta = d / r;

double cX = posX + r * sin(angle + centerRight * pi / 2.0);

double cY = posY + r * cos(angle + centerRight * pi / 2.0);

newX = cX + r * sin(angle - centerRight * pi / 2.0 + centerRight *

beta);

newY = cY + r * cos(angle - centerRight * pi / 2.0 + centerRight *

beta);

newAngle = angle + beta * centerRight ;

} else {

// not moving

newX = posX;

newY = posY;

newAngle = angle ;

}

// normalize new position data into map

newX = newX > mapWidth ? newX - mapWidth : newX;

posX = newX < 0? newX + mapWidth : newX;

newY = newY > mapHeight ? newY - mapHeight : newY;

posY = newY < 0? newY + mapHeight : newY;

newAngle = newAngle > 2* pi? newAngle - 2* pi : newAngle ;

angle = newAngle < 0? newAngle + 2* pi : newAngle ;

}

APPENDIX B. CODE LISTINGS 40

Listing B.2: Recording one lidar ray into the map

void LocalMap :: applyRay (double sensorX , double sensorY , double rayAngle ,

double rayLen) {

// ray end point

double rayX = sensorX + rayLen * sin(angle + rayAngle);

double rayY = sensorY + rayLen * cos(angle + rayAngle);

// end point in grid

int gX = map2gridX (rayX);

int gY = map2gridY (rayY);

// mark as obstacle (also mark 8- neighborhood)

matrix [clampGridX (gX -1)][clampGridY (gY -1)] = (matrix [clampGridX (gX -1)][

clampGridY (gY -1)] + 2) / 3;

matrix [clampGridX (gX -1)][gY] = (matrix [clampGridX (gX -1)][gY] + 2) / 3;

matrix [clampGridX (gX -1)][clampGridY (gY +1)] = (matrix [clampGridX (gX -1)][

clampGridY (gY +1)] + 2) / 3;

matrix [gX][clampGridY (gY -1)] = (matrix [gX][clampGridY (gY -1)] + 2) / 3;

matrix [gX][gY] = (matrix [gX][gY] + 2) / 3;

matrix [gX][clampGridY (gY +1)] = (matrix [gX][clampGridY (gY +1)] + 2) / 3;

matrix [clampGridX (gX +1)][clampGridY (gY -1)] = (matrix [clampGridX (gX +1)][

clampGridY (gY -1)] + 2) / 3;

matrix [clampGridX (gX +1)][gY] = (matrix [clampGridX (gX +1)][gY] + 2) / 3;

matrix [clampGridX (gX +1)][clampGridY (gY +1)] = (matrix [clampGridX (gX +1)][

clampGridY (gY +1)] + 2) / 3;

// mark points on ray as empty

for (int j = 0; j < rayLen ; j += 10) {

double p = ((double) j) / rayLen ;

double pX = sensorX + p * (rayX - sensorX);

double pY = sensorY + p * (rayY - sensorY);

int gX = map2gridX (pX);

int gY = map2gridY (pY);

// don ’t overwrite obstacles found by previous rays from this batch

if (matrix [gX][gY] < 1.0) matrix [gX][gY] = matrix [gX][gY] / 3;

}

}

Bibliography

[AGLL12] Jose M Alvarez, Theo Gevers, Yann LeCun, and Antonio M

Lopez. Road scene segmentation from a single image. In Eu-

ropean Conference on Computer Vision, pages 376–389. Springer,

2012.

[Bai02] Tim Bailey. Mobile robot localisation and mapping in extensive

outdoor environments. Citeseer, 2002.

[Cho05] Howie M Choset. Principles of robot motion: theory, algorithms,

and implementation. MIT press, 2005.

[CK97] Kok Seng Chong and Lindsay Kleeman. Accurate odometry and

error modelling for a mobile robot. In Robotics and Automation,

1997. Proceedings., 1997 IEEE International Conference on, vol-

ume 4, pages 2783–2788. IEEE, 1997.

[Duc12] F Duchon. Lokalizácia a navigácia mobilnỳch robotov do vnú-

torného prostredia. Bratislava: Vydavatelstvo STU, 2012.

[GM02] Giuseppina C Gini and Alberto Marchi. Indoor robot navigation

with single camera vision. PRIS, 2:67–76, 2002.

[GOH93] J Gonzalez, A Ollero, and P Hurtado. Local map building for

41

BIBLIOGRAPHY 42

mobile robot autonomous navigation by using a 2d laser range

sensor. IFAC Proceedings Volumes, 26(2):835–838, 1993.

[NNB04] David Nistér, Oleg Naroditsky, and James Bergen. Visual odom-

etry. In Computer Vision and Pattern Recognition, 2004. CVPR

2004. Proceedings of the 2004 IEEE Computer Society Conference

on, volume 1, pages I–I. Ieee, 2004.

[PPU02] Stefano Panzieri, Federica Pascucci, and Giovanni Ulivi. An

outdoor navigation system using gps and inertial platform.

IEEE/ASME transactions on Mechatronics, 7(2):134–142, 2002.

[rob] Robotour 2018 results. https://robotika.cz/competitions/

robotour/2018/results/en. Accessed: April 30, 2019.

[TB96] Sebastian Thrun and Arno Bücken. Learning maps for indoor mo-

bile robot navigation. Technical report, CARNEGIE-MELLON

UNIV PITTSBURGH PA DEPT OF COMPUTER SCIENCE,

1996.

https://robotika.cz/competitions/robotour/2018/results/en
https://robotika.cz/competitions/robotour/2018/results/en

List of Figures

2.1 Building local map from sensor data [GOH93] 5

2.2 Example of CNN architecture [AGLL12] 7

2.3 Comparison of actual robot path (circle), odometry (dashed

line) and GPS (plus) [PPU02] 10

5.1 Smelý Zajko with upgraded hardware during a testing session.

RPLIDAR A2 top center, Navilock 8022 top left and Jetson

TX 2 mounted below the laptop 22

5.2 Histogram of road surfaces. Hue on vertical axis, saturation

on horizontal. Shade of pixels represents occurrence in data set. 24

5.3 Road detection process. Algorithm processes original image

(a) using histogram (fig. 5.2) to detect road surface (c). Over-

saturated image (b) shows that the road is mostly red/magen-

ta/blue hue. 25

5.4 Transformation of image to local map. Original image (a)

is evaluated (fig. 5.3), inverted to show obstacles (b) and

transformed so that pixels represent local map cells (c) 26

5.5 Illustration of the two algorithms. Red grid cell shows robot

position, green cells obstacles and blue rectangles the areas

created by algorithms . 30

43

LIST OF FIGURES 44

6.1 Robots that took part in Robotour 2018 [rob]. 32

A.1 Visualization of local map and radial algorithm during Robotour. 37

	Introduction
	Problem overview
	Lidar obstacle detection
	Camera obstacle detection
	Statistical approach
	Convolutional neural networks

	Mapping
	Odometry
	Satellite navigation
	Optical tracking

	Previous solution
	Robot description
	Logic and control
	Localization and routing
	Steering and obstacle avoidance
	Evaluation

	Design
	Local map
	Odometry
	Lidar
	Camera

	Robot navigation

	Implementation
	Hardware upgrades
	Local map
	Lidar data projection
	Camera data
	Odometry

	Navigation
	Area calculation
	Radial approach
	Parallel approach

	Results
	Robotour
	Algorithms

	Conclusion
	Local map visualization
	Code listings

