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Abstrakt

Vysoké koncentrácie znečist’ujúcich látok predstavujú vel’kú hrozbu pre dnešnú aj budúcu
populáciu. Predložená práca sa zaoberá predpoved’ou znečistenia ovzdušia pre látky PM10

a NO2. Celá práca bola vypracovaná v súlade s CRISP-DM procesom, ktorý pozostáva z
viacerých krokov ako je porozumenie problému, analýza dát, spracovanie dát a modelovanie.
Predpovede boli vytvorené pre stanicu umiestnenú na rušnej dopravnej ulici
Bratislava - Trnavské Mýto. Na doplnenie chýbajúcich dát sme použili K-Nearest-Neighbours
algoritmus. Na modelovanie predpovede boli použité štyri metódy. Štatistická metóda (Sea-
sonal naive) slúži ako orientačná, od ktorej by mali d’aľsie tri modely strojového učenia sa
(MLP/ RNN/ LSTM) dávat’ lepšie výsledky. Pre všetky neurónové siete (NN) sme zvolili
architektúru s práve jednou skrytou vrstvou. Predpovede boli vždy vytvorené o 23:00 v
hodinových krokoch na d’aľsie tri dni. Ako nezávislé premenné do modelov boli použité dáta
z predošlých merańı kvality ovzdušia a meteorologických parametrov. Ako sa predpokladalo,
výsledky neurónových siet́ı prekonali jednoduchú štatistickú metódu, ale rozdiely medzi nimi
neboli prelomové. V rámci neurónových siet́ı jediný výrazný rozdiel sme pozorovali medzi
sekvenčnými modelmi (RNN/ LSTM) a MLP pri modelovańı predpoved́ı NO2, kde výsledky
sekvenčných modelov prekonávajú MLP.

Kl’́učové slová: strojové učenie, predpovedanie, znečistenie ovzdušia



Abstract

High concentrations of air pollutants are a major threat to current and future populations.
This work deals with air pollution predictions for PM10 and NO2. It follows the CRISP-
DM process which consists of multiple steps such as problem understanding, data analysis,
data pre-processing, and modeling. The forecasts were created for the station located on the
busy traffic street Bratislava-Trnavské Mýto. To address missing data K-Nearest-Neighbours
algorithm was used. Four methods were used for predictions, one of which was a statistical
method (Seasonal näıve) to serve as a benchmark, which was expected to outperform by the
other three machine learning models (MLP/ RNN/ LSTM). For all neural networks, we chose
architecture with one hidden layer. Predictions were always made at 23:00 in hourly steps for
the next three days. Previous measurements of the air quality and meteorological data were
used as independent variables. As expected, results of neural networks outperformed simple
statistical method. However, differences were not significant among them. We only observed
a significant difference for NO2 forecast modeling when compared sequential models (RNN/
LSTM) with MLP. The results from sequential models outperformed MLP.

Keywords: machine learning, forecasting, air pollution
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Introduction

Nowadays, air pollution is an important problem because of potential harmful effects on
human health and the environment. Therefore, air pollution forecasting is an important issue
to be improved. Most existing systems for forecasting use chemical transport models (CTM)
which are used for modeling of 2D or 3D grid of predicted concentrations. Many studies
mentioned in Section 1.5 propose machine learning algorithms to forecast air pollution. In
this thesis, we will focus on forecasting of air pollution concentrations for NO2 and PM10 for
station Bratislava-Trnavské Mýto. Predictions will be made at 23:00 in hourly intervals 3
days in advance, meaning 72 hours of predictions for NO2 as well as PM10.

Project methodology

Through the whole thesis, we will be following CRISP-DM (Cross Industry Process for
Data Mining) standard process which consists of six phases described in Figure 1 [20]. As
shown in the diagram we can see that CRISP-DM process is not linear. CRISP-DM con-
sist of cycle indicated with inner and outer arrows. Wirth & Hipp stated: The sequence
of the phases is not strict. The arrows indicate only the most important and frequent de-
pendencies between phases, but in a particular project, it depends on the outcome of each
phase which phase, or which particular task of a phase, has to be performed next [20].

Figure 1: CRISP-DM diagram [20] showing the most important dependencies.
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Following the CRISP-DM process, the first phase focused on understanding thesis objectives
is presented in Section 1.3. Data understanding phase consisting of understanding initial
data and closer insights through statistics is covered in Chapter 2 and Chapter 3, respec-
tively. Data preparation phase covering all activities to construct final dataset for modeling
is presented in Chapter 4. The modeling methodologies from Section 1.2 were applied with
final architectures and parameters described in Chapter 5. Evaluation phase with perfor-
mance metrics from Section 1.1 is presented in Chapter 6. It is important to note that
deployment is not goal of thesis thus we will not perform the final phase.
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1. Preliminaries

1.1 Metrics

The predictions accuracy will be evaluated using Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), Mean Bias (MB), Mean Fractional Bias (MFB), Mean Fractional
Error (MFE), and Pearson’s correlation coefficient (r). The size of the test set consists of N
data points, yi and ŷi represent real and modeled values, respectively. Metrics are defined as

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 , (1.1)

MAE =
1

N

N∑
i=1

|ŷi − yi| , (1.2)

MB =
1

N

N∑
i=1

(ŷi − yi) , (1.3)

MFB =
1

N

N∑
i=1

(ŷi − yi)
(ŷi + yi)/2

, (1.4)

MFE =
1

N

N∑
i=1

|ŷi − yi|
(ŷi + yi)/2

, (1.5)

r =

∑N
i=1(ŷi − ¯̂y)(yi − ȳ)√∑N

i=1(ŷi − ¯̂y)2
∑N

i=1(yi − ȳ)2
. (1.6)

RMSE and MAE are frequently used scale dependent measures of accuracy. Accuracy is
dependent on e = y− ŷ, and is unit dependent. MB is scale dependent average representing
systematic error of predictions. Mean Fractional Error and Mean Fractional Bias are a
normalized version of Mean Absolute Error and Mean Bias respectively. Since the MFB
ranges from −200% to +200% and MFE ranges from 0% to +200%, these metrics have the
advantage of bounding the maximum bias and error and do not allow a few data points to
dominate the metric [2]. Pearson’s correlation coefficient (r) is often used in statistics to
measure the linear relationship between two variables. Value r = 0 indicates no relationship,
r = −1, and r = 1 indicates strong negative and positive relationship respectively.
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Each model in the experiment was tested by Hold-out method (splitting dataset into
training set and test set) with a training set of 3649 samples (2003-2013) and a test set of
1823 samples (2013-2017). The results of experiments will be provided in Table 6.1 with
figures of performance metrics for each hour of 72-hour forecast.

4



1.2 Modeling methodologies

In Section 1.2, we will be using convention for MLP, RNN, and LSTM adopted by Lipton et
al. [12].

1.2.1 Seasonal näıve

Seasonal näıve is one of the simplest statistical time series forecasting methods. The method
is serving as a benchmark for models presented later in the experiment. Forecasts are
produced as follows

ŷT+h|T = yT+h−m·(k+1), (1.7)

where m is seasonal period and k is an integer part of (h−1)
m

. The term ŷT+h|T means the
forecast of yT+h taking account of y1,...,yT . As seasonal period was chosen m = 7 · 24, which
produces forecasts as exact copy measured from last week. Since the length of three day
forecast is smaller than a seasonal period (72 < 7 · 24), the formula can be rewritten as
follows

ŷT+h|T = yT+h−m . (1.8)

1.2.2 MLP

The fundamental building block of a multilayer perceptron is a neuron or sometimes called
perceptron. A multilayer perceptron is a type of feed forward neural network (FFNN)
consisting of input layer, at least one hidden layer and an output layer. Example of a
network with single hidden layer excluding bias can be represented as in Figure 1.1.

Figure 1.1: Example of MLP with a single hidden layer.

Following the convention from [12] we index neurons with j and j′. wjj′ denotes the
“to-from” weight corresponding to the directed edge to neuron j from node j′ [12]. Each
neuron in MLP computes value aj as a weighted sum of its input inj, see Equation (1.9).

5



It then becomes an argument to some differentiable activation function gj. In the case of
sigmoid, the activation is given by Equation (1.10).

inj =
∑
j′

wjj′a
′
j , (1.9)

aj = g(inj) =
1

1 + e−λinj
, (1.10)

where λ is the slope of sigmoid. Another common choice for an activation function is Rectified
Linear Unit (ReLU). The ReLU function is defined as follows

f(x) =

{
0 for x < 0

x for x ≥ 0
. (1.11)

Learning MLP

In the process of forward propagating values of neurons in each layer is computed by in-
puts from its lower layer until output ŷ is generated. In supervised learning, learning is
accomplished by finding the weights W of the network that minimizes cost function J .

W ∗ = argmin
W

J(W ) (1.12)

The weights W ∗ are the weights found by minimizing cost function J . Cost function is
computed as mean error of loss given by:

J(W ) =
1

N

N∑
i=1

L(f(x(i);W ), y(i)) (1.13)

=
1

N

N∑
i=1

(f(x(i);W )− y(i))2 , (1.14)

where the size of a dataset consisting of N datapoints. The predicted output of i-th datapoint
is ŷ(i) = f(x(i);W ) and actual value to be predicted is y(i). The error between predicted and
real value is given by loss L(ŷ, y). A common choice for loss is squared error. The minimum

loss is found using gradient descent which iteratively computes gradient ∂J(W )
∂W

and updates

weights W ← W − η ∂J(W )
∂W

of the network in the opposite direction of that gradient. The
term η (eta) refers to the learning rate which is the size of step in the opposite direction of
the gradient in the landscape of loss.

The algorithm used for training neural networks with gradient descent is backpropagation
which computes derivates of loss with respect to parameters of a network using the chain
rule.
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1.2.3 RNN

Recurrent neural networks are a type of artificial neural networks. They were designed to
work with sequences such as text, handwriting, the spoken word, or numerical times series
data. Information from time (t − 1) is maintained using hidden state h(t). This behavior
allows RNNs to maintain information in h(t) across multiple time-steps. The output ŷ(t) and
hidden state h(t) at a time (t) in Jordan’s architecture where output at a time (t− 1) is fed
to input is computed as follows

h(t) = g(W hxx(t) +W hhy(t−1) + bh) ,

ŷ(t) = g(W yhh(t) + by) ,

vector x(t) refers to input at time t, weights W hx to weights between input and hidden layer
and W hh to recurrent weights between the hidden layer and itself. Vectors by and bh are bias
terms. Recurrent neural networks are usually trained using Backpropagation through time
algorithm. Learning of RNNs can be especially challenging due to vanishing or exploding
gradient problems [12]. The vanishing gradient problem occurs, when gradients of the earlier
layers get smaller (vanishes) which results in very slow learning of the weights in the lower
layers. On the other hand, the exploding gradient occurs, when gradients in the layer get
bigger (explodes) which results in unstable training.

1.2.4 LSTM

Long Short Term Memory (LSTM) is a type of recurrent neural network, developed to tackle
vanishing and exploding gradient problem of simple RNN. Each neuron in the hidden layer
replaces memory cell. Each memory cell contains a node with a self-connected recurrent
edge of fixed weight one, ensuring that the gradient can pass across many time steps without
vanishing or exploding [12]. Each memory cell c in step (t) consists of: Input Node g

(t)
c ,

Input Gate i
(t)
c , Internal State s

(t)
c , Forget Gate f

(t)
c , Output Gate o

(t)
c , and produces Output

v
(t)
c . Following the [12] notation, the terms without the subscript c are vectors of values. For

example, s is a vector of internal states sc in a layer. It is important to note, that vectors of
outputs vc is denoted as h. Computations of LSTM in the forward pass at time step (t) is
defined as:

g(t) = σ(W gxx(t) +W ghh(t−1) + bg) (1.15)

i(t) = σ(W ixx(t) +W ihh(t−1) + bi) (1.16)

f (t) = σ(W fxx(t) +W fhh(t−1) + bf ) (1.17)

o(t) = σ(W oxx(t) +W ohh(t−1) + bo) (1.18)

s(t) = g(t) � i(t) + s(t−1) � f (t) (1.19)

h(t) = φ(s(t))� o(t) (1.20)

The Matrix W ij refers to edges between units i and j, activations σ and φ to sigmoid
and tanh, respectively. The operation �, represent pointwise multiplication. The output of
the layer is h(t) and output at the previous time step is h(t−1).

7



Figure 1.2: Single memory cell [12].

Figure 1.3: Single layer unfolded across two timesteps [12].
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1.3 Air quality

1.3.1 Air quality index

Air pollution concentrations are measured in µg/m3. However, government agencies use
various types of air quality indices (AQI) to inform public about the dangers of measured
concentrations. For example in Figure 1.4 [7] is presented European air quality index. AQI
values are shown in qualitative categories of air pollution which represents concentrations of
pollutants.

Figure 1.4: Air quality index (AQI)

1.3.2 Air pollution sources

Air pollution occurs when harmful or excessive quantities of substances including gases,
particles, and biological molecules are introduced into Earth’s atmosphere. Both human
activity and natural processes can generate air pollution [19]. Currently, in Europe there is a
problem with pollutants PM10, PM2.5, O3 and NO2. Particular matter (PM10 and PM2.5) are
mainly produced by fuel in road transport and power generation combustion. Ground level
ozone (O3) unlike stratospheric ozone, which forms naturally is also a source of smog and is
the product of an interaction between heat, sunlight, and man-made emissions from sources
such as motor vehicles and industry. Ground level ozone is formed in higher concentrations
during the summer and reaches its highest concentrations in the afternoon or early evening.
Nitrogen dioxide (NO2) is a highly reactive gas formed by emissions from motor vehicles,
industry, and households. High concentrations of NO2 can be found especially near busy
roads. Outdoors, nitrogen dioxide contributes to the formation of ground-level ozone as well
as particulate matter pollution [14].
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1.3.3 Health effects

The definition of an air pollutant is any substance which may harm humans, animals,
vegetation or material [9]. The different composition of air pollutants, the dose and time of
exposure and the fact that humans are usually exposed to pollutant mixtures than to single
substances, can lead to diverse impacts on human health. Human health effects can range
from nausea and difficulty in breathing or skin irritation, to cancer [9].

1.4 Existing systems

The following Section presents some existing systems providing daily forecasts for air pollu-
tion.

1.4.1 Copernicus

The Copernicus Atmosphere Monitoring Service (CAMS) provides continuous data and in-
formation on atmospheric composition [5]. Copernicus provides hourly predictions of 96
hours interval for many pollutants. It uses ENSEMBLE MODEL which is based on seven
state-of-the-art numerical air quality models developed in Europe [5].

1.4.2 THOR

The THOR is integrated weather and air pollution forecast system of models developed
by Jørgen Brandt and Jesper H. Christensen at National Environmental Research Institute
of Denmark. The system includes several meteorological and air pollution models used by
external applications. System produces 72 hours of weather and air pollution forecast four
times a day.

1.4.3 Met Office

The Met Office is the United Kingdom’s national weather service. Air quality forecasts are
produced by model AQUM [17] early in the morning for the current day as well as for the
next 4 days.

1.4.4 AirNow

The U.S. EPA (Environmental Protection Agency) AirNow program is the national reposi-
tory of real-time air quality data and next-day Air Quality Index (AQI) forecasts for United
States.
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1.5 Scientific studies

In the last decade many studies proposed to apply machine learning algorithms to air pollu-
tion predictions. Some researches defined air pollution forecasting as classification problem,
however most studies are defined as regression. For instance Corani [6] used feed-forward
neural network (FNN), pruned neural network (PNN), and lazy learning (LL) for predictions
of O3 and PM10 in Milan. The study is showing, that no significant differences are found
between the forecast accuracies of the different models; nevertheless, LL provides the best
performances on indicators related to average goodness of the prediction [6]. Lu et al. [13]
focused on comparison of prediction abilities between support vector machine (SVM) and
radial basis function (RBF). Study demonstrates, that SVM outperforms RBF network.

1.6 Toolkits

1.6.1 Source Code

Source code for a thesis is available at Github public repository [15].

1.6.2 Packages

The programming language of choice for the majority of work was Python. In some areas such
as timeseries analysis R was used, especially library stlplus. We used Python since it offers a
wide variety of packages from data processing and visualization to modeling. A library like
Pandas makes it easier to manipulate and analyze data. Most of the descriptive statistics in
the thesis were summarized with it. Extension of Pandas, Geopandas offers functionalities
for manipulation with geospatial data used in the early stages of work. Numpy is the
fundamental package for scientific computing, adding support for large, multi-dimensional
arrays and matrices. As a visualization tool, we used plotting libraries Matplotlib and its
extention Seaborn and Basemap for plotting 2D data on a map. Data imputation with KNN
and normalization was handled with sckit-learn. For modeling with MLP, RNN and LSTM
was chosen Keras, which is an open source neural network library.
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2. Input Data

In this chapter, we explore raw data obtained from SHMU air-quality and meteorological
stations. We will describe formats in which data were gathered and a brief description of
features containing them. In Section 2.4 we will present selected station for the experiment.

2.1 Data overview

For the purpose of the experiment we received data from 78 SHMU measuring stations
shown in Figure 2.1. All air pollution measurements were taken at different spots than
meteorological measurements. Both meteorological and air pollution measurements were
taken in hourly intervals from 1.1.2003 to 31.12.2017 except PM2.5 which holds measurements
from 1.1.2005 to 31.12.2017.

Figure 2.1: Meteorological stations (red cross), Air-pollution stations (blue circle).
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2.2 Meteorological data

Meteorological data were collected from 29 stations shown in Figure 2.1. Data were obtained
in 29 csv files consisting of features such as wind speed, wind direction, temperature, etc.
which are closely described in Table 2.1. Locations, names, and elevations corresponding to
stations were obtained in a separate file consisting of 27 stations. Missing data appeared
minimally with the exception of mean sea-level pressure. According to SHMU documenta-
tion, only stations with elevation smaller than 550 m are in a group tagged with code pppp.
After closer examination 10 of 27 stations with elevation bigger than 550 m were missing
this feature completely.

code units
air temperature ttt °C
dew point temperature td °C
wind direction dd °
wind speed ff m/s
mean sea-level pressure pppp hPa

Table 2.1: Meteorological features

In Table 2.1 column code refers to actual names of features listed in SHMU documen-
tation. Code ttt represents an absolute value of air temperature in the time of measuring.
Code td represents an absolute value of dew point temperature in the time of measuring.
Code dd represents the average wind direction for the last 10 minutes before measuring.
The closer description of coding dd is shown in Table 2.2. Code pppp represents values of
station air pressure in time of measuring, recalculated on mean sea level with correlation to
air temperature.

dd Meaning dd Meaning dd Meaning
00 windless 13 125 - 134 26 255 - 264
01 05°- 14° 14 135°- 144° 27 265°- 274°
02 15°-24° 15 145°- 154° 28 275°- 284°
03 25°- 34° 16 155°- 164° 29 285°- 294°
04 35°- 44° 17 165°- 174° 30 295°- 304°
05 45°- 54° 18 175°- 184° 31 295°- 304°
06 55°- 64° 19 185°- 194° 32 315°- 324°
07 65°- 74° 20 195°- 204° 33 325°- 334°
08 75°- 84° 21 205°- 214° 34 335°- 344°
09 85°- 94° 22 215°- 224° 35 345°- 354°
10 95°- 104° 23 225°- 234° 36 355°- 04°
11 105°- 114° 24 235°- 244°

99
variable
wind12 115 - 124 25 245 - 254

Table 2.2: Coding of wind direction (dd).
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2.3 Air quality data

Air Pollution data were obtained in 4 csv files. Metadata of stations such as location,
name, type of station, type of location were stored in a single shp file. Four pollutants files
contain measured concentrations of NO2, O3, PM10 and PM2.5. Pollution concentrations
were measured in µg/m3. Each of them holds records for a different number of stations.
Specifically, NO2 holds records for 50 stations, O3 for 49, PM10 for 50 and PM2.5 for 40.
There were huge quantities of data missing as shown in Figure 2.2.

Figure 2.2: Coverage of measurements for different pollutants. The years of measurements
are shown on the y-axis and measuring stations on the x-axis. The colour of each square
represents the percentage of measured data for a given pollutant, station, and year.

2.4 Station selection

As described in Section 2.1 we need to choose meteorological stations close enough to air-
pollution stations to truly represent the impact of meteorological values. In Section 2.2 we
talked about missing mean-sea-level pressure at stations with elevation bigger than 550m.
Finally, in Section 2.3 we described coverage of pollutant stations within different years.
Taking into account all these factors we chose to work with air quality monitoring traffic
station Bratislava-Tranvské Mýto and its closest meteorological station Bratislava Koliba.
Since Trnavské Mýto did not measure ozone and PM2.5 concentrations we decided to perform
an experiment with NO2 with coverage of 93.8% and PM10 with coverage of 96%.
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3. Data Understanding

3.1 Data quality report

Our data quality report in Table 3.1 shows statistical measurements for the selected station
from Section 2.4. Features shown in this report are divided into continuous and categorical
features. Both columns for continuous and categorical features include count, percentage of
missing values (Miss.%), and cardinality. In addition, continuous features contain calculated
columns for minimum, first quartile (Q1), mean, median, third quartile (Q3), maximum
and standard deviation. Categorical features also contain columns for the two most frequent
levels for the feature (Mode and Mode2), frequency and percentage with which these appear.
All features are plotted in Figures 3.2 and 3.2.

Trnavské Mýto

Continuous Features

Feature Count Miss.% Card. Min Q1 Mean Median Q3 Max Std. Dev.

pm10 131496 3.99 92218 0.025 17.31 34.17 28.65 45.08 503.1 23.81

NO2 131496 6.11 75051 0.088 22.57 41.32 36.55 54.87 208.0 24.84

ttt 131496 0.86 563 -20.0 3.4 10.72 10.8 17.6 38.9 9.2

td 131496 0.87 450 -24.5 -0.3 5.06 5.5 10.9 21.9 7.23

ff 131496 0.86 14 0.0 1.0 2.58 2.0 3.0 13.0 1.62

pppp 131496 0.91 646 976.4 1012.2 1017.11 1016.8 1022.0 1074.5 8.11

Categorical Features

Feature Count Miss.% Card. Mode Mode Freq. Mode% Mode2 Mode2 Freq. Mode2%

dd 131496 0.86 38 99.0 65905 50.56 30.0 490 4.45

Table 3.1: A data quality report, summarizing features of the dataset.
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Figure 3.1: Violin plots showing the distribution of each meteorological parameter in
Bratislava-Koliba station and N02 and PM10 measurements from Bratislava-Trnavské Mýto
station. Inside of each violin is a box plot.

Figure 3.2: Wind direction (dd) bar plot, showing frequency of each category described in
Table 2.2.
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3.2 Time Series Analysis

A time series is a set of observations xt, each one being recorded at a specific time t [3]. In
this thesis we are dealing with a discrete-time time series. Time series often shows patterns
such as trend, seasonality, and cyclic. A trend exists when there is a long-term increase
or decrease in the data [8]. The trend does not have to be linear. A seasonal pattern
occurs when a time series is affected by seasonal factors and is always of a fixed and known
frequency[8]. We are expecting three seasonal patterns hour of the day, day of a week and
month of a year. A cycle occurs when the data exhibit rises and falls that are not of a fixed
frequency [8].

3.2.1 Time Series Decomposition

As we discussed time series tend to exhibit various patterns. In the process of decomposi-
tion, we decompose time series into components of trend component, seasonal component
and remainder (sometimes called error or residual). We usually combine trend and cycle
into a single trend-cycle component (sometimes called the trend for simplicity) [8]. Since
multi-seasonal time series decomposition is beyond the scope of this thesis we will take a
different approach to visualize and measure the strength of different seasonalities. We will
be resampling time series observations using the average downsampling method from hourly
frequencies observations to daily and monthly frequencies. The method used for decompo-
sition called STL (Seasonal and Trend decomposition using Loess) developed by Cleveland
et al. [4] returns components of time series as an additive decomposition defined as

yt = St + Tt +Rt , (3.1)

where yt is time series, St is seasonal, Tt is a trend, and Rt is a remainder component.
We are presenting STL decomposition of monthly measurements of PM10 and NO2 in Figure
3.3. The strength of seasonality is defined as

Fs = max

(
0, 1− V ar(Rt)

V ar(St +Rt)

)
, (3.2)

where V ar() is variance. A series with seasonal strength Fs close to 0 exhibits almost no
seasonality, while a series with strong seasonality will have Fs close to 1 [8].

Season Pollutant Fs

Daily
NO2 0.275
PM10 0.085

Weekly
NO2 0.293
PM10 0.077

Annual
NO2 0.204
PM10 0.478

Table 3.2: Seasonal strength of PM10 and NO2.
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(a) NO2

(b) PM10

Figure 3.3: STL decomposition of monthly downsampled time series of PM10 and NO2.
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3.2.2 Autocorrelation

Autocorrelation is used in time series analysis, to measure the linear relationship between
lagged values of series. Just as correlation shows how much two features are similar, auto-
correlation shows how similar the time series feature is with itself. The value of rk (k-th lag)
can be written as

rk =

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

T∑
i=1

(yt − ȳ)2
. (3.3)

In Figure 3.4 are shown autocorrelation plots of 72 lags (3 days) for NO2 as well as PM10.

Figure 3.4: Autocorrelation plot is showing the autocorrelation coefficient on y-axis and
different lags of the series on x-axis. For example, lag 10 is the correlation between time t
and t− 10.

The periodicity shown in the Figure 3.4 is due to daily seasonality. The higher peaks
in NO2 part in contrast with PM10 part of the figure confirms the difference between the
strength of daily seasonality in Table 3.2.
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4. Data Preparation

4.1 Data quality issues

After getting to know the data it is important to take a closer look and identify some of the
data quality issues. The most common are missing values, irregular cardinality, and outliers
[10]. The main focus of this section is identifying these issues if they are present and correct
them.

4.1.1 Missing values

In Table 3.1 column Miss.% highlight the percentage of missing values for each feature and
Table 4.1 shows coverage of measured values within years. There are several methods used
for dealing with missing data depending on specific circumstances. First, we are going to
determine what type (also referred to as missingness mechanism) of missing values are we
dealing with. In the literature [16, 1, 18] missingness mechanisms are generally referred to
as: Missing Completely At Random (MCAR), Missing At Random (MAR) and Not Missing
At Random (NMAR). In our case, we are assuming that MCAR is the most appropriate
mechanism since missing data depends on technical errors. Missing data handling tech-
niques can be classified into two classes Traditional (Conventional) Methods and Imputation
Methods. Some of the conventional methods are Ignoring, Deletion, or Mean/Median/Mode
Imputation [16]. Imputation methods could be Regression Imputation, Hot and Cold Deck
Imputation, K-Nearest Neighbor (KNN) Imputation and many more. Nowadays, there are
many studies [1, 18] comparing effectiveness of different methods depending on the nature
of missing data.

Handling missing values

As we can see in Table 4.1 meteorological values were missing in much smaller quantities
except for the year 2010 in which data were missing in one continuous gap. A solution
for the 2010 gap we decided to fill in data with observations from last year. For the rest
of meteorological data we performed mean/mode imputation with respect to the nearest
observed values. For air pollution data we decided to perform K-Nearest Neighbor (KNN)
imputation which is a non-parametric instance-based learning method used for classification
or regression. The metric used for the algorithm was Euclidean distance. The Euclidean
distance between two points in N-dimensional space is given by Equation (4.1). Target was
predicted as a weighted mean of k nearest neighbors in the training set.
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pm10 no2 ttt td ff pppp dd
2003 99.1 87.2 99.97 99.97 99.97 99.97 99.97
2004 97.91 96.32 99.97 99.97 99.97 99.97 99.97
2005 98.76 95.27 100.0 99.85 100.0 100.0 100.0
2006 98.74 98.0 99.92 99.92 99.92 99.92 99.92
2007 97.69 98.14 100.0 100.0 100.0 100.0 100.0
2008 99.36 99.53 99.92 99.85 99.92 99.92 99.92
2009 98.93 96.62 100.0 100.0 100.0 100.0 100.0
2010 98.47 82.91 88.36 88.36 88.37 88.36 88.37
2011 96.54 83.61 99.71 99.71 99.71 99.71 99.71
2012 88.13 94.24 99.69 99.69 99.62 99.67 99.62
2013 95.53 99.63 99.61 99.61 99.61 99.61 99.61
2014 94.77 98.26 100.0 100.0 100.0 100.0 100.0
2015 96.77 97.09 99.98 99.98 99.98 99.29 99.98
2016 89.83 90.66 100.0 100.0 100.0 100.0 100.0
2017 89.58 90.79 99.99 99.99 99.99 99.99 99.99

Table 4.1: Coverage of variables.

d(p, q) =

√√√√ N∑
i=1

(qi − pi)2 . (4.1)

Overall, we found 7492 instances of missing NO2, 4570 instances of PM10 and 1920 instances
of missing both NO2 and PM10 at the same time. For each of the next cases: predicting PM10

with and without NO2, and predicting NO2 with and without PM10; we trained different
models tested by Hold-out method in which we partitioned training set to test set in ratio
75:25. A number of neighbors (k) used in the models was chosen by best MAE given in
Figure 4.1. Predictors of all models were normalized using range normalization to scale from
0 to 1.
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Figure 4.1: Mean absolute errors of four models (predicting PM10 with and without NO2,
and predicting NO2 with and without PM10) are shown on y-axis. Parameters k of the
KNN-imputation models are shown on x-axis.

4.1.2 Irregular cardinality

In the process of examining possible irregular cardinality, we mainly focus on the column
Card. in Table 3.1. Only irregularity found is ff (wind speed) with the cardinality of 14
which is unusual for continuous features. After closer examination of the data we can see
that values of wind speed were rounded on the whole number and measured in m/s thus we
can assume that nothing is wrong.

4.1.3 Outliers

Outliers are values that lie far away from the central tendency of a feature. There are two
kinds of outliers that might occur; valid outliers and invalid outliers [10]. We did not find
any invalid outliers in the whole dataset, however valid outliers were found in PM10 and
NO2. Since all outliers lie in the range of possible concentrations in AQI Table 1.4 we chose
to not handle them.
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4.2 Normalizations

4.2.1 Range Normalization

Normalization is a technique often used in machine learning to transform features within
different ranges to a common scale. The simplest approach is range normalization which is
given by

a′i =
ai −min(a)

max(a)−min(a)
× (high− low) + low , (4.2)

where a′i is a normalized feature and ai is original value. The term high and low refers to
range in which we want to scale the data.

4.2.2 Standard Score Normalization

Another approach to normalizing the data is to standardize them into standard scores, as
follows

a′i =
ai − ā
sd(a)

, (4.3)

where ā is mean and sd(a) is the standard deviation of the feature. This way is accomplished
that mean of feature is zero and standard deviation is one. Standard score normalization
was applied in the experimental phase of the thesis.

4.2.3 Handling Circular Features

Numerical values of circular features such as hours, weekday or wind direction are not fully
representative of its meaning. For example, sunday is close to monday however their numer-
ical values are not. One way to deal with this problem is to transform this feature into two
features given by

sin ai = sin

(
2πai

max(a)

)
, (4.4)

cos ai = cos

(
2πai

max(a)

)
. (4.5)

Figure 4.2: Example of weekday transformation (Sunday on top).
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5. Proposed Solution

We started with MLP as a benchmark to other neural network models. Next, we used vanilla
RNN which is more suitable for sequenced data modeling. The last method we chose was
the improved recurrent neural network LSTM, to be compared with vanilla RNN.

5.1 Experimental Setup

Parameters of all models were picked with trial and error procedure. To avoid overfitting,
we chose to use early stopping, which refers to stopping the training process before an error
on the validation set starts to increase.

5.1.1 NN Architecture

All models described below consist of a single hidden layer and an output layer of 72 outputs.
The output vector with linear activation function represents 72 hours step forecast. Adam
[11] optimization algorithm was used for the training process. Instead of a single stationary
learning rate as in Stochastic Gradient Descent, Adam maintains learning rates per weights,
which are adapted through the training process. Last 24 observations of predicted pollutant
were used as inputs to MLP. The hidden layer consists of 150 neurons with ReLU activation
function. Inputs used for RNN and LSTM were multiple sequences of the last 24 observations
shown in Figure 5.1. For a hidden layer, we chose 180 neurons and 200 memory cells for
RNN and LSTM, respectively. Both used tanh activation function within a hidden layer.

Figure 5.1: Input sequences for LSTM and RNN.
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6. Results

In this chapter, we are presenting the final results of the experimental phase. Table 6.1
shows the preformance of each model. SN refers to the Seasonal näıve method. Column
Overall summarize the mean performance of models for 72 hours of the forecast, columns
Day1, Day2, Day3 mean of 24 hours of each day separately.

The Figures 6.1-6.6 show performance of models for each hour of the forecast. From
figures and Table 6.1 it can be concluded that machine learning models outperform simple
Seasonal näıve model. Difference between MLP, RNN, and LSTM is not as significant for
PM10, however NO2 predictions of recurrent networks are better than simple MLP. The oc-
curring daily periodicity shown in figures can be explained with the location of the measuring
station on a busy traffic street. The bigger variance of measured air pollution can occur due
to population traveling to the work and back home; consequently, errors of models peak
approximetly at 8:00 and 20:00.

In the work [2], authors introduced goals and criteria of PM modeling for three-dimensional
air quality models. Nevertheless, authors established criteria and goals of three-dimensional
modeling, we adopted them in the work as well for both NO2 and PM10. Boyland and
Rusall lay goals and criteria as follows: Goal has been met when both the mean fractional
error (MFE) and the mean fractional bias (MFB) are less than or equal to +50% and
±30%, respectively. Additionally, the model performance criteria has been met when both
the MFE ≤ +75% and MFB ≤ ±60% [2]. From the column Overall for NO2 we can see
that all models passed both criteria and goals, however in Figure 6.3, is shown, that Seasonal
näıve method did not met goal of MFE ≤ +50% for several hours of the forecast so we did
not consider the model to met the goals. Column Overall for PM10 clearly shows that neural
networks outperform the Seasosonal Naive method and all of them met performance goals.
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NO2 PM10

Overall Day1 Day2 Day3 Overall Day1 Day2 Day3

SN

RMSE 24.55 24.54 24.55 24.55 23.9 23.9 23.9 23.89

MAE 18.12 18.11 18.12 18.13 17.52 17.52 17.52 17.51

MB -0.04 -0.06 -0.04 -0.03 -0.11 -0.12 -0.11 -0.09

MFB -0.17 -0.24 -0.18 -0.11 -0.38 -0.43 -0.39 -0.32

MFE 48.1 48.06 48.1 48.15 58.57 58.56 58.57 58.58

r 0.44 0.44 0.44 0.44 0.18 0.18 0.18 0.18

MLP

RMSE 20.43 18.82 21.07 21.3 16.63 14.08 17.25 18.27

MAE 15.54 14.0 16.18 16.44 12.38 10.14 13.02 13.97

MB 2.17 1.85 2.31 2.35 -2.08 -1.91 -1.84 -2.5

MFB -6.23 -5.46 -6.53 -6.7 -18.15 -16.07 -17.98 -20.39

MFE 41.54 37.09 43.42 44.11 42.46 35.83 44.49 47.06

r 0.48 0.59 0.43 0.41 0.48 0.66 0.41 0.31

RNN

RMSE 18.05 16.71 18.53 18.82 16.16 13.78 16.74 17.71

MAE 13.6 12.36 14.08 14.37 11.99 9.96 12.56 13.47

MB -0.63 -0.84 -0.48 -0.58 -1.25 -0.95 -1.22 -1.59

MFB -10.6 -10.24 -10.54 -11.0 -11.61 -8.25 -12.12 -14.48

MFE 36.99 33.27 38.52 39.17 41.97 36.31 43.61 45.98

r 0.63 0.69 0.6 0.59 0.53 0.68 0.49 0.4

LSTM

RMSE 18.01 16.68 18.46 18.81 15.78 13.72 16.19 17.22

MAE 13.56 12.34 13.99 14.34 11.78 9.91 12.26 13.16

MB -0.77 -0.59 -0.74 -0.96 -1.82 -1.08 -1.92 -2.47

MFB -11.21 -9.17 -11.73 -12.73 -16.23 -12.11 -17.19 -19.39

MFE 36.81 33.6 37.99 38.85 40.68 35.05 42.27 44.73

r 0.63 0.69 0.61 0.59 0.55 0.68 0.51 0.42

Table 6.1: Daily and Overall performance of models. RMSE, MAE, and MB are in units
µg/m3. The best results of models for given metric and time period for both pollutants are
highlighted in bold.
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Figure 6.1: Figure shows RMSE for PM10 and NO2 predictions of test set. On x-axis are
hours of 72-step forecast. On y-axis is RMSE.

Figure 6.2: Figure shows MAE for PM10 and NO2 predictions of test set. On x-axis are
hours of 72-step forecast. On y-axis is MAE.
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Figure 6.3: Figure shows MFE for PM10 and NO2 predictions of test set. On x-axis are
hours of 72-step forecast. On y-axis is MFE.

Figure 6.4: Figure shows MB for PM10 and NO2 predictions of test set. On x-axis are hours
of 72-step forecast. On y-axis is MB.
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Figure 6.5: Figure shows MFB for PM10 and NO2 predictions of test set. On x-axis are
hours of 72-step forecast. On y-axis is MFB.

Figure 6.6: Figure shows correlation coefficient r for PM10 and NO2 predictions of test set.
On x-axis are hours of 72-step forecast. On y-axis is correlation coefficient r.

29



Conclusion and Future Work

Future Work

In the future, it would be interesting to compare other advanced timeseries statistical meth-
ods such as Autoregressive integrated moving average (ARIMA) or Vector autoregression
(VAR) with machine learning models presented in the thesis. Future studies should also
target on different formulation of problems. We propose that further research should be
undertaken in the following direction:

• SHMU official website informs the public about smog situations which are declared
when the mean of last 12 hourly measurements crossed the threshold of concentrations
dangerous to human health. This way the output of models can be formulated as
binary classification (smog situation/ not smog situation) rather than to forecast the
expected concentrations.

• Another way to transform regression to classification is to use Air Quality Index (AQI)
categories; models could be trained to output one of six categories (very good/ good/
medium/ poor/ very poor) for a given pollutant.

• In this work we predicted the concentrations of the pollutants based on the previous
measured data only. In the future, it will be interesting to include the predicted
meteorological values obtained from physical models. For this purpose the SHMUs
model Aladin provides multivariate forecasts of the weather. We hope, that future
work will include data obtained from model Aladin and compare the performance with
models presented in the thesis. There is also possibility to use these models to forecast
the air pollution on the daily basis.

Conclusion

In this thesis, we decided to structure the work similarly to the CRISP-DM process. We
found out that most of the air quality measurements stations at Slovakia exhibit big drop-out
gaps leaving datasets with many missing values. The gaps at Bratislava-Trnavké Mýto were
not as severe. Nevertheless, we had to perform imputation using the K-Nearest Neighbor
algorithm. Many stations are also not suitable for modeling with meteorological variables
due to the long distance between meteorological and air quality measurements stations.

We decided to divide the data understanding phase into the classical descriptive statistics
part, which enables us to understand and summarize features, and time series analysis part.

30



Time series analysis focused mainly on exploring the strength of seasonal component using
STL decomposition algorithm. We found out that annual seasons tend to exhibit the biggest
PM10 seasonal strength and almost none daily and weekly. On the other hand, NO2 shows
moderate strength for all (annual/ weekly/ daily) seasonalities.

To prepare the dataset for modeling we described techniques like standard score normal-
ization and range normalization used in KNN-imputation and neural networks, respectively.
We also used the transformation of circular features (hours/ weekday/ month/ windspeed),
which preserves the nature of such features.

We theoretically described selected methods for modeling and compared the performance
of each method. The machine learning models outperformed simple statistical method how-
ever, neural network results behaved likewise. The only significant difference occurred in
predicting NO2, where RNNs (vanilla RNN/ LSTM) gave better results than MLP in some
parts of the forecast. Otherwise, we surprisingly found minimal differences between vanilla
RNN networks and LSTM.
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