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Abstrakt

V práci prezentujeme umelé neurónové siete vhodné na analýzu zrážok. Na-

trénovali sme viacero modelov neuronových sietí na radarových dátach od

Slovenského hydrometeorologického ústavu.

Vytvorili sme hlboké obojsmerné rekurentné modely neurónových sietí,

ktoré 8-násobne prekonali referenčné hodnoty poskytnuté Slovenským hy-

drometeorologickým ústavom. Modely vytvorené v tejto práci pomôžu Sloven-

skému hydrometeorologickému ústavu s analýzou zrážok pre účely doda-

točného skúmania a predpovede povodní.

Kľúčové slová: deep learning, meteorológia, radarové údaje, zrážky
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Abstract

In the work we present artificial neural networks suited for precipitation

analysis. Multiple neural networks are fitted on radar data provided by

Slovak hydrometeorological institute.

We created deep bidirectional recurrent neural networks, which achieved

approximately 8 times better results than reference values provided by Slo-

vak hydrometeorological institute. Models created for the purpose of this

work shall help Slovak hydrometeorological institute with rainfall analysis

for additional calculations and flood prediction purposes.

Keywords : deep learning, meteorology, radar data, precipitation

vii



Contents

1 Overview 3

1.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Early history of Neural networks . . . . . . . . . . . . 4

1.1.2 Multi-layer perceptron and back-propagation . . . . . . 5

1.1.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Similar work . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Analysis of rainfall . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Slovak radar network . . . . . . . . . . . . . . . . . . . 13

2 Problem Formulation and Analysis 16

2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . 19

3 Solution Design 25

3.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Evolution of models . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Multiple models . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



CONTENTS ix

4 Results and Evaluation 30

4.1 Means of performance evaluation . . . . . . . . . . . . . . . . 30

4.2 Comparison of architectures . . . . . . . . . . . . . . . . . . . 32

4.3 Specific vs general models . . . . . . . . . . . . . . . . . . . . 40

4.4 Reference values . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Conclusion 50

Bibliography 52



Introduction

Artificial intelligence helps, improves, takes over various scientific branches.

However, there are fields where methods of AI expanded to level of utmost

importance, yet there are spheres with very little touch of AI.

Hydro-meteorology is a discipline where various machine learning meth-

ods are regularly used, though some of the predictions and analysis still

depend on old very deterministic-like calculations. We believe that many

of those problems can be regulated or even completely solved using modern

machine learning techniques.

Rainfall analysis is a task, that is generally approached in an old-fashioned

way in Europe. The Slovak hydrometeorological institute uses radar reflectiv-

ity data to calculate precipitation using Marshall-Palmer distribution. This

method tends to be rather inaccurate, due to mostly due to high measurement

error and significant noise in radar measurements.

The main goal of the thesis is to create an artificial neural network capable

of predicting in-progress rainfall using data from Slovak radar network. Neu-

ral network predictions provide data for further analysis, most importantly

estimating flood dangers in certain regions of Slovak Republic.

The first chapter is an overview of theoretical background of the method-

ology used in thesis with focus on artificial neural networks and rainfall

analysis. The second chapter introduces data and describes means of utilizing

1
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the neural network model. The third chapter provides results of the final

model, the comparison of different approaches and a performance evaluation

in general.



Chapter 1

Overview

This chapter is the general overview of theoretical knowledge and historical

background of methods used in the thesis. The first two sections focus on

neural networks, while the third section brings details about rainfall analysis

in general and in Slovak Republic specifically.

1.1 Artificial Neural Network

"In its most general form, a neural network is a machine that is designed

to model the way in which the brain performs a particular task or function

of interest." [Hay09]. Artificial neural networks were created to reflect the

model of human brain. Haykin expressed the resemblance of a brain and an

artificial neural network in two important points:

• Knowledge is obtained from the network’s environment through the

course of learning.

• Large degree of interconnection is used to accumulate the acquired

knowledge.

3
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As neural networks being currently the most powerful tool of modern

artificial intelligence, they have been through lot of evolution and experi-

mentation.

1.1.1 Early history of Neural networks

The first model of neural network was created in 1943 by McCulloch and Pitts

[MP43]. Threshold Logic Unit, as the first artificial neuron of the model,

was capable of simulating elementary logical operations (such as AND, OR,

NOT). This type of neuron was not capable of learning whatsoever and

threshold values were anchored. Figure 1.1 displays McCulloch’s and Pitts’

formal neurons.

Figure 1.1: Threshold Logic Unit designed by McCulloch and Pitts.

Frank Rosenblatt later modified McCulloch-Pitts model, creating an algo-

rithm he called perceptron, using which, the model was able to do the task of

pattern recognition. The image of Rosenblatt’s perceptron is shown in figure

1.2. However, most of the progress in the area was dampened by the research

by Minsky and Papert in 1969. They pointed out some of the limitations of

perceptron. The main problem was that the perceptron is unable to solve

linearly inseparable problems (XOR problem). Scientists were yet unaware
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of any learning rules mandatory for resolving such tasks, therefore Minsky

and Papert suggested focusing on different approaches [MP69]. The research

for supervised learning in neural networks was delayed and later this branch

was reborn with the invention of error back-propagation learning [KBP+97].

Figure 1.2: Rosenblatt’s perceptron.

1.1.2 Multi-layer perceptron and back-propagation

Back-propagation was first practical method used for neural network models

with hidden layers. The learning rule is based on minimizing the error

function, which defines the difference between desired and actual output of

the network. With back-propagation available, neural networks with hidden

layers showed a great promise in many fields of science. In addition to this,

multi-layer perceptron is able to approximate arbitrary functions, making

them a very valuable tool for regression [KBP+97]. The architecture of MLP

with one hidden layer is shown in figure 1.3.
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Figure 1.3: Multi-layer perceptron model.

In spite of considerable success in form of back-propagation algorithm,

neural networks were commonly replaced by different machine learning meth-

ods in 1990’s. The paper in 1992 brought up more attention to support vector

machine model [BGV92]. Since SVM models were easier to apply, fitting was

faster and choice of hyper-parameters was simpler, neural networks lost on

popularity again [Kuz14].

1.1.3 Deep learning

Nowadays deep learning is commonly used as a phrase in connection with

artificial intelligence, however it was only in late 2000’s when the real progress

in this area rose. Very significant research in 1991 by Sepp Hochreiter

revealed a considerable problem in using a gradient descent algorithm for

back-propagation in networks with more hidden layers [Kuz14]. This ob-

stacle, called the problem of vanishing/exploding gradients, consists in error
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passing back through layers is exponentially augmented in each layer. As

a result of this, the gradients in initial layers tend to be extremely large

or small. This problem is usually solved by pre-training the network with

unsupervised learning or different choice in activation functions. Avoiding

activation functions which have domain containing potentially very large

numbers, while range consists of non-proportionally small numbers helps.

The simple example of this is a logistic sigmoid function,

f(x) = 1
1+e−x ,

which have domain of all real numbers, while range is <0,1>. An ac-

tivation function that suffers less from the problem of vanishing/exploding

gradients is a rectified linear unit,

f(x) = max(0, x),

since the derivation of the positive part is constantly 1. The derivation

of non-positive part is 0,which causes sparsity in gradients and activations,

therefore speeds up the training [Kuz14].

The plot showing a comparison of logistic sigmoid and rectified linear unit

functions is displayed in the figure 1.4
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Figure 1.4: The comparison of logistic sigmoid and ReLU for x in range <-5, 5>

Deep neural networks got more popular lately, because of the graduate

increase in computing power. Since deep networks are suited for molding

complex, nonlinear transformations, various model architectures achieve re-

markably well in specific tasks.
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1.2 Recurrent Neural Network

Although simple deep architectures are capable of solving various tasks, with

some category of tasks these networks still seem to have troubles. Particularly

problems, where the essence of the task itself is quite unconventional, like

tasks with time dependency [KBP+97]. Let’s assume following sequence of

vector pairs (x,y):

a −→ X; b −→ Y ; c −→ Z; d −→ W ,

where a, b, c, d ∈ Rn and X, Y, Z,W ∈ Rm. Elements of this sequence

form a certain structure in space Rn ×Rm and this structure can be simply

fitted by MLP model. However if we alter the sequence in a specific way:

a −→ X; b −→ Y ; c −→ Z; b −→ W ; a −→ X; b −→ Y ,

we can observe a very special pattern with the significance to b. In the

sequence, b outputs differently according to its predecessor in the sequence.

Therefore, if we wanted to fit the model, the output of the network should

not be influenced only by its input. The information about the past inputs

is supposed to be stored in the network as well.

Generally, any artificial neural network can be classified as recurrent,

if the network is capable of storing the information about neuron activation

from previous inputs. This is usually done by dedicating some of the neurons

of the network for storing this kind of information.

Simple architectures, like Elman’s network [Elm90] and Jordan’s network

[Jor89] are elegant extensions of MLP (covered in section 1.1.2), with added

context layer adding loop into network. Elman’s hidden layer outputs both

into output layer and context layer. The input for hidden layer is input layer

and context layer.
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(a) Elman’s network (b) Jordan’s network

Figure 1.5: The difference between Eman’s and Jordan’s network.

Difference in Jordan’s network is that context layer’s input comes from

network’s output layer. Figure 1.5 shows the architectures of Elman’s net-

work and Jordan’s network.

Bengio proposed having multiple context layers, as multiple layer’s ac-

tivation memory [KBP+97]. The architecture created as a combination of

Jordan’s and Elman’s network is displayed in figure 1.6.
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Figure 1.6: Combination of Jordan’s and Elman’s network.

Recurrent neural networks got highly popular for time-dependent tasks,

sequence prediction or generation, speech recognition, handwriting recogni-

tion, etc. As a result of this, large numbers of various RNN architectures were

created. With each task, different architectures showed promises. This gave

rise to new learning methods used in recurrent neural networks [KBP+97].

As a modification of BP algorithm (see 1.1.2), back-propagation through

time was created. In BPTT recurrent network is unfolded into multi-layer

perceptron. Then usual back-propagation algorithm is used to update the

weights of unfolded network. Another widely used algorithm created for

this purpose is called real time recurrent learning. The changes in network

weights are accomplished while the network continues to perform [Hay09].

Both methods are based on gradient descent and therefore are inclined to

be involved in problem of vanishing/exploding gradients described in section

1.1.3.
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1.2.1 Similar work

The success of using recurrent neural networks for rainfall analysis was achieved

by Aaron Sim in 2015. He attended a Kaggle-hosted competition named How

Much Did It Rain? II, which he won using recurrent neural networks. The

goal of the competition was to predict hourly rainfall from radar measurement

sequences. Aaron’s article Estimating rainfall from weather radar readings

using recurrent neural networks explains his approach to this problem and

reasons why he achieved such notable success in the competition [Sim15].

Architectures created for the purpose of the competition inspired net-

works in the thesis. However, an approach to data handling was completely

different, due to differences in data.

1.3 Analysis of rainfall

Analysis of rainfall is a significant segment in hydrometeorology. It connects

to modelling the outflow of the rainfall water and then later estimating flood

dangers.

Data provided by Slovak Hydrometeorological Institute are gathered us-

ing over 120 precipitation gauges and radar measurements. Precipitation

gauge measurements are used as target values, or ground truth. Meteorologic

radar is a device, capable of detecting intensity of precipitation. Radar

emits cone-shaped pulses into atmosphere, where the energy collides with

any objects - drops of water, snowflakes, partly clouds, terrain, airplanes,

etc. Portion of energy echoes back from targets and is detected by radar.

Distance r can be then calculated by formula

r = tc
2
,
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where t is the time between the pulse being dispatched and the energy

being received and c is the light speed. The wavelengths used by radars filter

meteorologic consisting highly of water and ice particles, because they are

within the range of Rayleigh scattering. Radar reflectivity Z then varies by

the sixth power of the rain droplets’ diameter D:

Z =
∑

(D6),

in decibel, being logarithmic of its original mm6/m3, for practical rea-

sons. This measurement occurs under multiple angles, therefore reflectivity

is stored for multiple altitudes [Bli11].

1.3.1 Slovak radar network

Slovak Republic disposes of 4 weather radars strategically positioned over

the republic. Previous network consisting only of two radars: Maly Javornik

(west part of Slovakia) and Kojsovska hola (east part of Slovakia) was ex-

panded in 2015, because the network appeared to be insufficient. The exact

location of radars is displayed in figure 1.7.
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Figure 1.7: Slovak radars placement and appearance.

With the addition of radar stations: Kubinska hola (north part of Slo-

vakia) and Spani laz (central south Slovakia), the network coverage was

improved [JKOM14]. Current radar network and its coverage is illustrated

in figure 1.8.
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Figure 1.8: Map of Slovak radar network with each radar’s range.



Chapter 2

Problem Formulation and

Analysis

The Problem Formulation and Analysis chapter introduces some data anal-

ysis, approach to data preprocessing and programming languages and tools

used in work.

2.1 Dataset

The Slovak Hydrometeorological Institute provided us with precipitation

gauges measurements and radar data. Dataset was collected over the course

of 5 months, August through December 2016, with 5 minute measurement

intervals.

2.1.1 Data analysis

The complete dataset consists of following parameters:

• id of station

16
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• country

• radar name/code

• radar measurement

• altitude of radar measurement

• calculated rainfall using Marshall-Palmer distribution

• longitude

• latitude

• time-stamp

• quality flag

• precipitation measurement

During the measurement, a radar gained up to 10 reflections from dif-

ferent altitudes. Therefore the data for a 5-minute window contains 10

radar measurements, altitudes and rainfall values calculated using Marshall-

Palmer distribution. The table 2.1 displays some first-look data properties.

Parameters altitude[i], reflectivity[i] and marshall-palmer[i] corresponds to

altitude of a measurement, radar measurement in dBZ and rainfall calculated

using Marshall-Palmer distribution. Parameters x and y are values obtained

by doing a projection from longitude and latitude and dividing by a common

constant due to their initial disproportional scale. Target rainfall refers

to precipitation measurement in mm/5 min, being the value we wish to

approximate.
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Table 2.1: Input data properties

Parameter name Mean Standard deviation Max value Min value

altitude0 2550.71 1303.096 6302.123 257.657

reflectivity0 -29.766 9.847 63.013 -32.

marshall-palmer0 0.035 0.548 316.369 0.

altitude1 4026.842 2141.568 10231.612 661.502

reflectivity1 -30.079 9.289 60.12 -32.

marshall-palmer1 0.032 0.508 208.622 0.

altitude2 5611.767 3098.719 14413.533 0

reflectivity2 -30.445 8.279 61.347 -32.

marshall-palmer2 0.023 0.422 248.925 0.

altitude3 7288.891 4099.346 18750.946 0.

reflectivity3 -30.745 7.368 62.26 -32.

marshall-palmer3 0.016 0.363 283.86 0.

altitude4 9675.286 6185.748 27906.519 0.

reflectivity4 -31.01 6.487 61.628 -32.

marshall-palmer4 0.011 0.306 259.171 0.

altitude5 12787.393 8874.292 37419.656 0.

reflectivity5 -31.138 5.862 61.106 -32.

marshall-palmer5 0.008 0.258 240.443 0.

altitude6 16604.778 12296.689 49720.138 0.

reflectivity6 -31.235 5.386 64.24 -32.

marshall-palmer6 0.005 0.213 377.444 0.

altitude7 19112.118 17773.987 65532.615 0.

reflectivity7 -27.61 11.159 58.257 -32.

marshall-palmer7 0.003 0.165 159.553 0.
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altitude8 22230.871 24440.53 83446.11 0.

reflectivity8 -23.057 14.408 59.835 -32.

marshall-palmer8 0.002 0.104 200.24 0.

altitude9 23339.289 32487.041 103938.695 0.

reflectivity9 -16.127 16.014 58.066 -32.

marshall-palmer9 0.001 0.065 155.234 0.

x* -0.397 0.097 0. -0.568

y* -1.233 0.039 0. -1.327

target rainfall 0.074 0.95 99.12 0.

2.1.2 Data preprocessing

The process of data breakdown and analysis revealed that preprocessing is

the essential process for subsequent stages of model creation.

The first round of data preprocessing simply joined data rows, since

obtained data were in multiple files. Filtering out samples with insufficient

quality flag ensured the removal of transparently incorrect samples.

Since we use recurrent models of neural networks (specifics in 3.1), it

is crucial that the data entering the network are in certain order. Seeing

that, the dataset needed to be sorted according particular rules. First thing

was categorizing data by station id. In total, we split 19,977,638 samples

into 137 stations, averaging 145,822 samples per station. Each station data

was then sorted by time-stamp and replicated to create hour periods. Each

hour period consists of 12 time frames. The figure 2.1 shows the process of

duplicating sorted samples to create final samples, which contain information

from complete hour.
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Figure 2.1: The data duplication into 12-frame windows.

At this point the first attempts for model fitting were made. Nevertheless,

the model overwhelmed by vast majority of "empty" data samples* was not

able to predict any reasonable values (*data where there was no rainfall,

nor radar measurements at all). The model prediction average error was

incredibly small for one simple reason. The model simply predicted almost 0

rainfall in every sample, which meant it would be correct in over 99% cases.

However, this result is unacceptable for our purpose of using predictions to

forecast flood dangers. In our case, it is far worse to ignore a massive rainfall

than to predict one, when there is none. Because of this we closely analyzed

distribution of rainfall across the dataset. The figures 2.2 and 2.3 show the

distribution of data among 9 range groups.
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Figure 2.2: Precipitation distribution across the dataset.

The figure 2.2 clearly shows that samples with 0 mm per 5 minutes are

very frequently represented in our dataset. With this in mind, we can better

understand why model is ignoring samples with more rainfall, especially

those with more than 8 mm per 5 minutes. If we ignore the first group,

the distribution of other groups becomes more balanced, which is shown in

figure 2.3.
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Figure 2.3: Precipitation distribution across the dataset without 0 mm/5 min
samples.

In order to improve the model performance in situations with major

precipitation volume, the input data needed to be normalized. We simply

ignored the majority of empty samples and filtered samples to create custom

samples ratio. We started out at the uniform distribution and through

experiments decreased the ratio of groups with higher rainfall level. The

best created distribution ratio is shown in table 2.2.
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Rainfall group Group ratio

0 10

0 to 0.5 10

0.5 to 1 10

1 to 1.5 7.5

1.5 to 2 5

2 to 3 5

3 to 5 5

5 to 8 5

more than 8 5

Table 2.2: The best ratio of rainfall groups for input.

The procedure of data distribution normalization showed the first reason-

able results in model fitting. At this point, it was obvious that the models

are beginning to approximate our targets for the first time.

However, there was another substantial obstacle models were facing and

that being noise in radar measurements. Upon closer inspection of data,

there still was a large number of misleading samples - ones that contain no

reflectivity in radar measurements, but notable precipitation levels. Samples

like that are caused by radar measurement uncertainty. The figure 2.4 plainly

displays some of the possible causes of measurement uncertainty. By further

filtering such data samples out, we created a final set of viable input samples

for neural network.



CHAPTER 2. PROBLEM FORMULATION AND ANALYSIS 24

Figure 2.4: Common sources of anomalies in radar measurements



Chapter 3

Solution Design

The third chapter describes software used and neural network models utilized

for the thesis.

The process of creating an architecture for neural network models was

highly inspired by Aaron Sim’s kaggle competition winning article [Sim15].

Since our task is a regression based on data from time series, we deploy

recurrent models (reasons for RNN are explained in 1.2).

3.1 Implementation details

All of the model fitting, data analysis and preprocessing were written in

python 3.6, with use of some libraries commonly used for data science and

neural networks.

More and more popular Numpy library was used for most of the data

handling and any work with matrices and tensors. Neural network models

were created using keras with GPU-accelerated tensorflow backend facili-

tated through NVIDIA’s CUDA platform. And most of the data visualization

and results evaluation were produced using matplotlib.

25
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3.2 Evolution of models

We started out with a simple many-to-one recurrent neural network. The

figure 3.1 displays this simple, shallow model.

Figure 3.1: First RNN model, consisting of input, single recurrent and output
layers.

Inspired by the Aaron Sim’s article, we implemented bidirectional re-

current layer, as we can consider the task in a different matter. Aaron

wrote "there is nothing preventing us from viewing the problem as rain

flying up from rain gauges on the ground and reconstituting itself as clouds"

[Sim15] and introduced a reversed recurrent layer on the top of the original

one. Results (more in detail in chapter 4) show that the architecture with

added reversed recurrent layer surpassed the simpler model. The model with

bidirectional recurrent layer is shown in figure 3.2.
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Figure 3.2: RNN model, containing bidirectional recurrent layer.

Model was extended by another stack of bidirectional recurrent layer

gaining more depth. Neurons count rises towards the output layer through

the network. A set of experiments was executed to test the best neuron

counts performance. The performance peaked with the combination of 256

neurons in the first layers and 512 neurons in deeper layers of the network.

The figure 3.3 captures the final architecture of model used for fitting and

further experiments described in the next section (sec. 3.3).
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Figure 3.3: Final RNN model with best overall performance.
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3.3 Multiple models

To further improve performance, we decided to try an experiment where

isolated model for each station was created. The final result contains 137

models for all stations and one general model trained on data from all

stations. The results are compared in the chapter 4, Results and Evaluation.



Chapter 4

Results and Evaluation

This chapter focuses on evaluation of results. The first section explains the

interpretation of results and graphs, and other sections provide the results

from different points of view.

4.1 Means of performance evaluation

The ground truth in the context of the evaluating the results are values used

as target for neural network measured by precipitation gauges, described in

section 1.3. The results evaluated in this chapter are judged by following

assessments:

• mean squared error (MSE)

• predicted value vs ground truth graphs (2 types)

• comparison of predicted and reference values

MSE = 1
n

∑n
i=1(Yi − Ŷi)

2,

where Y is predicted value, Ŷ is expected value and n is the number of

samples.

30
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The figure 4.1 is an example of "predicted value vs ground truth graph".

Blue dots represent the relationship between the predicted value and the

target. In ideal situation, all of the blue dots should be on the orange line. A

dot located closer to x axis means the prediction was smaller than it should

have been. On the other side, if a dot is leaning towards y axis, the prediction

value was higher than actual value.

The second type of "predicted value vs ground truth graph" is presented

by example on the figure 4.2. The y axis represents rainfall value, while x axis

is only sample rank. Samples were sorted in ascending order by target values

for clearer comparison. In ideal situation, blue dots should all be covered by

orange dots, meaning all of the samples were predicted exactly the same as

the ground truth.

Figure 4.1: Predicted values vs ground truth in general models.
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Figure 4.2: Predicted values vs ground truth in general models.

4.2 Comparison of architectures

As described in section 3.2, we compared 3 different models, varying mostly in

network depth. Results are compared for specific models of selected stations.

For this comparison we chose the best performing station and the worst

performing station.

The models of stations with best performance achieved similar results,

but the deeper model, the better results were recorded. The comparison of

learning curves is displayed in the figure 4.3 and the comparison of perfor-

mance graphs is shown in figures 4.4 and 4.5. You may notice a difference

in number of epochs in each architecture, since early stopping method was

used to avoid overfitting.
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Figure 4.3: The comparison of shallow (top), medium (middle) and deep (bottom)
model fitting learning curves on best performing station.
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Figure 4.4: The comparison of shallow (top), medium (middle) and deep (bottom)
model performance on best performing station.
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Figure 4.5: The comparison of shallow (top), medium (middle) and deep (bottom)
model performance on best performing station.
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The difference in performance of models of worst performing station was

slightly more important.

However this step was only fine-tuning, since most of the improvement

was made due to data preprocessing. Figures 4.6, 4.7 and 4.8 show the

learning curves and performance graphs of worst performing station.
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Figure 4.6: The comparison of shallow (top), medium (middle) and deep (bottom)
model fitting learning curves on worst performing station.
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Figure 4.7: The comparison of shallow (top), medium (middle) and deep (bottom)
model performance on worst performing station.



CHAPTER 4. RESULTS AND EVALUATION 39

Figure 4.8: The comparison of shallow (top), medium (middle) and deep (bottom)
model performance on worst performing station.
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4.3 Specific vs general models

The experiment clearly demonstrated that the models for specific stations

were superior to single general model.

The total of 137 models resulted in average of 7.9543 MSE, while the

general model had a 25.4259 MSE. The figure 4.9 displays the histogram

of specific models performance. The most commonly represented are values

3-10, meaning most of the models have an error lesser than
√
10(≈ 3.33)

mm per hour. The comparison of stations along with reference values are

summed up in table 4.1 in the next section.

Figure 4.9: The histogram of MSE achieved by stations.

The figure 4.10 display the learning curve of general model fitting process
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and figures 4.11 and 4.12 show the performance evaluation of the model.

Figure 4.10: The learning curve of general model.
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Figure 4.11: Predicted values vs ground truth in general models.

Figure 4.12: Predicted values vs ground truth in general models.
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4.4 Reference values

As a final reference values, we used the values calculated using Marshall-

Palmer distribution. However, for a single output value form a model, we

have multiple reference values from measurements in different altitudes. A

common way to approach this problem is selecting a maximal value out of

the whole vertical profile. This interpretation is a slightly simplified version

of results produced by SHMI.

The dataset with reference values added was generated later from the

same data distribution as the train and test subsets, however results may

slightly differ.

The figure 4.13 displays the histogram of reference values MSE distri-

bution. You may notice, that some of the stations had immensely poor

performance when it comes to reference values.



CHAPTER 4. RESULTS AND EVALUATION 44

Figure 4.13: The histogram of MSE achieved by Marshall-Palmer values.

The comparison of the worst performing NN model is displayed in the

figures 4.14 and 4.15. There is not so much of a difference in performance.

The MSE of neural network is approximately half (model 19.88 vs reference

39.78 MSE) of the reference values, which is caused mostly by a small number

of significant errors.

However, the great difference of performance is comprehensible in the

comparison of the best performing model. Figures 4.16 and 4.17 display

the comparison of the performance graphs of the station with best perfor-

mance from models. The neural network model performs approximately 146

times better when it comes to MSE metric. You can clearly see that model

predictions are superior to reference values in the graphs.
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Figure 4.14: The comparison of predicted values (top) and reference values
(bottom) versus ground truth on best performing station.
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Figure 4.15: The comparison of predicted values (top) and reference values
(bottom) versus ground truth on best performing station.
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Figure 4.16: The comparison of predicted values (top) and reference values
(bottom) versus ground truth on best performing station.
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Figure 4.17: The comparison of predicted values (top) and reference values
(bottom) versus ground truth on best performing station.

The table 4.1 sums up the performance comparison of specific models,

general model and Marshall-Palmer values thought of as reference values.
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The table shows that the performance of models for specific stations are

superior to other results.

Table 4.1: The comparison of some specific, general models and reference
values.

Model MSE Station id

best specific 1.1383 42137

average specific 7.9543 x

worst specific 19.8792 42051

general 25.4259 x

best reference 21.7827 42013

average refrence 65.8855 x

worst reference 326.625 42043



Chapter 5

Conclusion

The goal of this thesis was to create an artificial neural network model, which

would be superior to results achieved by SHMI using a Marshall-Palmer

relation.

We created multiple recurrent models capable of achieving such results.

Model architectures were inspired by Aaron Sim’s work in 2015, which won

a data science competition. Results presented in chapter 4, Results and

Evaluation, clearly show that model created for the purpose of the thesis is

superior to calculations obtained by using Marshall-Palmer. In average, our

models achieved over 8 times better results than results achieved by SHMI

using Marshall-Palmer relation. The main goal of the thesis was successfully

accomplished.

Major aspects of creating a well-performing model was utilizing the re-

currence in neural network and a great deal of data preprocessing for the

needs of recurrent network. The thesis justified the applicability of recurrent

neural networks for certain type of task, such as dealing with numeric data

in time series.

The future work of the thesis lies in further researching parameters and

50
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architectures of networks. The goal would be either to replace multiple

models for all of the stations by single fine tuned and well fitted model or

to approach each specific model individually and improve its performance

independently to other models. We also discussed possibility of creating

specific models for different seasons or even months, since various weather

features might differ.
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