
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

HUMANOID ROBOT LILLI
Master Thesis

2020 Bc. Gabriel Halasi

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

HUMANOID ROBOT LILLI
Master Thesis

Study programme: Aplied informatics

Study field: 2511 Aplied informatics

Department: Department of Applied Informatics

Supervisor: Mgr. Pavel Petrovič, PhD.

Bratislava, 2020 Bc. Gabriel Halasi

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Gabriel Halasi
Study programme: Applied Computer Science (Single degree study, master II.

deg., full time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Humanoid Robot Lilli

Annotation: Robot Lilli has been presented at Maker Faire 2018 in Vienna by its author
Per R. Ø. Salkowitsch. It is a humanoid robot with 25 degrees of freedom
constructed of laser-cut plywood pieces. There is no control sotware for the
robot available at the moment. The aim of the diploma thesis is to study and
implement algorithms that will allow the robot to move in its environment
including inverse kinematics and utilizing the Machine Learning algorithms. It
is expected that the student will develop a simulated model of the robot and
verifies the algoithms both in simulation and on the real robot.

Literature: R.Siegwart et.al: Introduction to Autonomous Mobile Robots, The MIT Press,
2011.
H. Choset et.al: Principles of Robot Motion, Theory, Algorithms, and
Implementations, The MIT Press, 2005.

Keywords: humanoid robot, inverse kinematics, machine learning, simulation

Supervisor: Mgr. Pavel Petrovič, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 26.09.2018

Approved: 31.10.2018 prof. RNDr. Roman Ďurikovič, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Gabriel Halasi
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: aplikovaná informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Humanoid Robot Lilli
Humanoidný Robot Lilli

Anotácia: Robot Lilli predstavil na viedenskom podujatí Maker Faire 2018 jeho
autor Per R. Ø. Salkowitsch. Ide o humanoidného robota s 25 stupnami
voľnosti vytvoreného z dielov vyrezaných z preglejky laserom. K robotu
zatiaľ neexistuje obslužný softvér. Cieľom diplmovej práce bude preskúmať
a implementovať algoritmy, pomocou ktorých sa robot bude vedieť pohybovať
vo svojom prostredí, vrátane inverznej kinematiky a využitia algoritmov
strojového učenia. Predpokladá sa vytvorenie modelu robota pre simuláciu
a otestovanie algoritmov v simulácii i na reálnom robotovi.

Literatúra: R.Siegwart et.al: Introduction to Autonomous Mobile Robots, The MIT Press,
2011.
H. Choset et.al: Principles of Robot Motion, Theory, Algorithms, and
Implementations, The MIT Press, 2005.

Kľúčové
slová: humanoidný robot, inverzná kinematika, strojové učenie, simulácia

Vedúci: Mgr. Pavel Petrovič, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 26.09.2018

Dátum schválenia: 31.10.2018 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

I hereby declare that this Diploma thesis is my own work

and that all the sources I have used or quoted have been

indicated and acknowledged as complete references.

. .

Bratislava, 2020 Bc. Gabriel Halasi

Acknowledgement

In the first place, I want to thank my supervisor, Mgr. Pavel Petrovič, PhD.,

for the support, willingness and encouraging words that were helpful for me.

Next, I also want to thank my girlfriend, family, relatives and friends for

helping and enduring many of these difficult moments.

vi

Abstract

The Diploma thesis is about a Humanoid robot Lilli and provides an insight

into the history of humanoid robots, the robot shapes, types of robots and

their degree of freedom. The work deals with the construction of a humanoid

robot from the basics, which includes various CAD systems to model any

type of robot, the joint selection and the model definition in unified robot

description format. The thesis offers a comparison of simulators and then

their use for motion simulations. Furthermore, in this work we managed to

build a clean model, calculate the center of mass and the rotational inertia

for all the separate links and to set the position of the joints. After that,

we successfully created the URDF structure, which fully describes the robot

definition except the closed loop chain. The second approach of this thesis are

simulations in the CoppeliaSim environment. It explains the scene, model,

simulation control using remote API and embedded scripts. In the research

part of the work we describe the forward and inverse kinematics problems.

The last part shows the control of a kinematic chain, where we successfully

reached an arm motion with Pseudo inverse and DLS calculation methods,

which are part of the inverse kinematics solver.

Keywords: humanoid robot, CAD systems, clean model, 3D model, URDF,

CoppeliaSim, remote API, inverse kinematics

vii

Abstrakt

Diplomová práca s názvom Humanoid robot Lilli poskytuje stručný prehľad

o histórii humanoidných robotov, o tvaroch a typoch robotov, o ich stupňoch

voľnosti pohybu. Práca sa zaoberá vybudovaním humanoidného robota od

základov, čo zahŕňa rôzne CAD systémy, pomocou ktorých sa dá vymodelo-

vať hocijaký robot, výber typov servomotorov a definícia modelu v unifiko-

vanom opisnom formáte robota. Práca ponúka porovnanie simulátorov a ich

použitie pri simulácii pohybu. Následne sa nám v práci podarilo vybudovať

čistý model, vypočítať ťažisko a krútiaci moment pre všetky samostatné linky

a nastaviť pozíciu servomotorov. Ďalej sme úspešne vytvorili URDF štruk-

túru, ktorá plne opisuje definíciu robota okrem uzatvorených reťazcov. Druhá

časť práce sa zaoberá simuláciou v prostredí CoppeliaSim. Vysvetľuje scénu,

model, riadenie simulácie pomocou remote API a vstavaných scriptov. V

časti výskum popisujeme problémy doprednej a inverznej kinematiky. V

poslednej časti je popísané riadenie kinematického reťazca, pri ktorom sme

úspešne dosiahli pohyb ramenom pomocou kalkulačných metód Pseudo in-

verse a DLS.

popis robota v zjednotenej podobe alebo porovnávanie simulátorov a

následne ich použitie na simulácie pohybu. Ďalej táto práca popisuje tiež

hmotnostné vlastnosti robota ako je vyrátanie ťažiska, moment zotrvačnosti a

rieši problematiky doprednej a inverznej kinematiky. Následne práca poukáže

viii

ix

na to, ako vybudovať 3D model správne pre vybraný simulátor a uložiť do

štruktúry URDF, ktorá je zjednotená. Druhá časť práce sa zaoberá simulá-

ciou v prostredí CoppeliaSim. Vysvetľuje scénu, model, riadenie simulácie

pomocou remote API a vstavaných scriptov. V poslednej časti je popísané

riadenie kinematického reťazca pomocou inverznej kinematiky.

Kľúčové slová: humanoid robot, CAD programy, čistý model, 3D model,

URDF, CoppeliaSim, remote API, inverzná kinematika

Contents

1 Introduction 1

2 Motivation 3

3 Research 4

3.1 Humanoid robots . 4

3.1.1 History and overview 5

3.1.2 Robot shapes . 7

3.1.3 Terms characteristic 8

3.2 Humanoid robot model and simulators 9

3.2.1 Degree of Freedom . 9

3.2.2 Modelling software . 10

3.2.3 Robot description formats 11

3.3 Robot simulators and comparison 14

3.3.1 V-REP simulator . 15

3.3.2 Gazebo robot simulator 15

3.3.3 ARGoS robot simulator 16

3.4 Mass properties . 17

3.4.1 Center of Mass . 17

3.4.2 Moment of inertia . 19

x

CONTENTS xi

3.5 Kinematics . 22

3.5.1 Forward kinematics . 25

3.5.2 Inverse kinematics . 29

3.5.2.1 Geometric solution 30

3.5.2.2 Algebraic solution 33

4 Design of robot Lilli model 36

4.1 Clean model . 36

4.1.1 Shapes . 37

4.1.2 Joints . 39

4.1.3 Dynamic shapes . 41

4.1.4 Model definition . 42

4.1.5 URDF . 44

4.2 The simulator . 46

4.2.1 Scenes . 46

4.2.2 Scripts and Remote API 47

4.2.3 Calculation Modules 50

4.2.4 Inverse kinematics . 50

4.2.4.1 IK groups and IK elements 51

4.2.4.2 Solving IK and FK 53

5 Implementation 55

5.1 Building the clean model . 55

5.1.1 AutoCAD and 2D parts 55

5.1.2 Problem of inertia and utilization of Solidworks 57

5.1.3 3D model . 58

5.1.4 Lilli’s description and closed loop chain problem 61

5.2 Lilli in CoppeliaSim . 66

CONTENTS xii

5.2.1 JAVA Remote API . 67

5.2.2 Arm movement via inverse kinematics 68

5.2.2.1 Solution to unstable model 71

6 Evaluation 72

6.1 3D model . 72

6.2 URDF . 73

6.3 Warmp-up with leg . 77

6.4 Warmp-up with arm . 78

7 Conclusion 81

List of Figures

3.1 Da Vinci´s humanoid automata 5

3.2 Wabot-1 anthropomorphic robot 6

3.3 ARMAR-III upper body humanoid robot 8

3.4 Human body planes and NAO joint’s configuration 10

3.5 Straight rod rotating around an axis 20

3.6 Two coordinate frame systems 23

3.7 Relationship between forward and inverse kinematics 24

3.8 Joint variable meaning for revolute and prismatic joint 25

3.9 Coordinate frames added to elbow links 26

3.10 Planar manipulator with 2-DOF 30

3.11 Derived equations for a planar manipulator 31

4.1 A complex CAD model . 38

4.2 <Joint> element for describing the joint in URDF 39

4.3 <Joint> element in SDF . 39

4.4 Four joint types in order revolute, prismatic, screws and spher-

ical joint . 40

4.5 Scene hierarchy . 43

4.6 one link and one joint definition in URDF 45

4.7 Kinematic chain describes the IK element 52

xiii

LIST OF FIGURES xiv

4.8 Two kinematic chains share common link 53

5.1 DXF files containing 2D objects 56

5.2 A single extruded part . 56

5.3 Right forearm . 56

5.4 Robot left hip assembly . 59

5.5 Lilli’s 3D model . 59

5.6 Visualised joint axis . 60

5.7 Lilli’s tree structure . 61

5.8 Closed loop chain . 65

5.9 Scene after the URDF import 66

5.10 Linked tip-target pair . 69

5.11 The scene with the sphere as the target object 70

6.1 3D model . 73

Chapter 1

Introduction

Humanoid robotics is a developing research field and it is becoming more and

more popular which can be seen in the number of recent researches.

This branch is dealing with building humanoid robots in order to under-

stand the processing of human-like information. This includes the form of

appearance, solving the human motion, interaction and other features. The

research in humanoid robotics disposes many uncovered issues and describes

solutions to classical problems of control theory or in artificial intelligence.

Nowadays there exist many researches such as Haikawa & Takenaka 1998

[Beh08] or Inaba & Inoue 1998 [Beh08] which describe integrated humanoid

robots. In addition, except these researches there exist conferences dedi-

cated only to humanoid systems such as the International Symposium on

Humanoid Robots (HURO) [Beh08], which was first held at Waseda Univer-

sity [Beh08]. Major importance for advances of the field is with no doubt

the availability of reproducible humanoid robots systems, which have been

used in the last years as common hardware and software platforms to sup-

port humanoids research. This news are reflected by the firmly established

annual IEEE-RAS International Conference [Beh08] on Humanoid Robots,

1

CHAPTER 1. INTRODUCTION 2

which is an internationally recognized prime event of the humanoid robotics

community.

Humanoid robots are being used in the inspection, maintenance and dis-

aster response at power plants to relieve human workers of laborious and

dangerous tasks. These robots are a relatively new form of professional ser-

vice robots. While long-dreamt about, they are now starting to become

commercially viable in a wide range of applications. The humanoid robots

market is poised for significant growth. It is projected that the market for

humanoid robots will be valued at 3.9 Billion dollars in 2023.

In this research we will build our humanoid robot from the start. That

means, we will create a 3D model of the robot and after that we would like

to structure that model into a unified robot description format. In order

to build the 3D model we need to define the robot links as a mesh or a

primitive shape, which are adapted to our idea. Next we will substitute the

robot servomotors with the correct type of joint and we must find a CAD

system to define the relationship between the links and the joints. Except of

that, we will calculate the links center of mass, rotational inertia and mass,

which are important to the physics engine. Depending of the robot model

we will select a unified robot structure to describe it. The second approach

of the research will be to demonstrate the forward and inverse kinematics

to solve the joint variables. In this step we will use the inverse kinematics

solver of the simulator to simulate a kinematic chain motion.

Chapter 2

Motivation

This idea started in 2018 at the Maker Faire event, when Per R. Ø. Salkow-

itsch showed robot Lilli to the audience. We talk about a humanoid robot,

which has twenty-five degree of freedom and its parts were carved out from

plywood sheet with laser. At that time, the servicing system did not exist in

the robot. Our goal will be to explore and implement algorithms, which can

serve to control the robot’s motion in his own environment. This research

must include inverse kinematics and must utilize algorithms of machine learn-

ing. It is assumed that we need to create a 3D robot model for simulation

purposes and testing algorithms by simulations and after that on the real

robot.

3

Chapter 3

Research

In this section we will discuss the existing solutions, systems, solvers and

researches which help us to understand how humanoid robots work, how

to start building these robot systems or how to solve its physics or inverse

kinematics problems. First, we need to introduce the humanoid robot, its

past and we will talk a little bit about humanoid types. After that, we will

see how to construct a 3D model of the real robot and this construction we

will use to create simulation in robot simulator. At the end, you will see

the research about robot simulators, its advantages and disadvantages and

which robot simulator is selected for the simulation. Next part is dedicated

to physics and inverse kinematics of humanoid robots. This includes existing

researches, solutions and problems of kinematics.

3.1 Humanoid robots

A humanoid robot is generally defined as a programmable machine, which

was built to mimic human motions and interactions. Humanoid robots need

to solve two types of challenges. First, they need to be able to learn, which

4

CHAPTER 3. RESEARCH 5

includes many different kinds of cognitive capabilities - from recognition of

new types of objects, and properties of their environments, learning new

skills, new knowledge, improving communication abilities with humans, and

second, they need to perform and carry out physical work, for example mov-

ing objects or take care of its own locomotion and movements One of them

is learning new information and the second is carrying out physical work, for

example moving objects. Let us see the historical development of humanoid

robots.

3.1.1 History and overview

The history of mechanical systems is wide. These mechanics imitate the

human behaviour. Even several hundreds years ago, people were building

mechanical devices that were imitating human behavior. For instance, one

of the earliest forms of humanoids was created in 1495 by Leonardo Da Vinci

[Beh08]. The robot could stand, sit, raise its visor and individually move its

arms. The entire robot was operated by a number of pulleys and cables.

Figure 3.1: Da Vinci´s humanoid automata adopted from [Bor16]

The word robot was first presented in the literary work RUR by the

CHAPTER 3. RESEARCH 6

Czech author Karel Capek in 1921. The mechanical servant in the play had

a humanoid appearance. After that in 1926 Maria was the first humanoid

robot which appeared in the movie.

In the second part of the 20th century the development in the information

technology made it possible to include some important computations for the

sensing, controlling and manipulating of the robots. Researchers developed

many isolated systems for sensing and motion which included human abilities.

In 1973 a robot called Wabot-1 [Bor16] was invented, which included previous

systems. This robot was full-scale anthropomorphic robot able to walk on

two legs.

Figure 3.2: Wabot-1 full-scale anthropomorphic robot adopted from [Bor16]

After these inventions in 1996 Honda revealed its Humanoid P2 [Bor16]

robot, which was able to walk steadily on two feet. It was the first self-

contained full-body humanoid. In the U.S., researchers completed a full-scale

android body. Another invention was constructed by company Sony. They

CHAPTER 3. RESEARCH 7

created a small humanoid robot which was able to recognize faces, could

express emotions and could walk on flat surface.This robot was called Qrio.

The following robots are very innovative and popular world wide:

• Sophia: She was created by Hanson robotics and can accomplish a wide

range of human actions. It was the first robot citizen. The robot is

able to make fifty facial expressions.

• The Kodomoroid TV Presenter: This humanoid robot’s name is com-

posed of two words: child-Kodomo and Android. This robot was in-

vented by Japanese researchers and she speaks more languages, she is

able to read news and give weather forecast.

• Jia Jia: They have been working on the model for three years before

they introduced it at the University of Science and Technology of China.

It has got limited motion and it can make conversation.

3.1.2 Robot shapes

At present, different humanoid robots exist world wide. Different means

that they have different sizes and shapes. Furthermore, these robots have

different behaviour. Some models are focusing only to head and face and

other models have head with hands which are located on the static torso.

At the end, there exist full-body humanoids on the wheels and without two

feet. These differences are in play in the usage of robots mainly in mobility,

actuating, motion of body or interaction with humans.

CHAPTER 3. RESEARCH 8

Figure 3.3: ARMAR-III upper body humanoid robot adopted from [Edw]

Upon humanoids we will usually classify them into two groups, into An-

droids or Gynoids. Design of an Android [Bor16] was made like a male human

and gynoid [Bor16] emulates a female human.

Humanoids possess certain features. They have sensors that help them

in sensing their environment. Some have cameras that allow them to see

clearly. Motors placed at strategic points are what guides them in moving

and making gestures. These motors are usually referred to as actuators.

3.1.3 Terms characteristic

Actuators - also known as motors, which help in motion and making ex-

pressions with moving humanoid body. Our body is dynamic and therefore

we easily pick up things and manipulate them. Humanoid robots need to do

the same things by simulating wide range of our actions. These actuators

imitate the actions flexibly and effectively.

Sensors - humanoid robots use them to sense the environment around

them. Robots need many sensors to carry out expressions correctly and

without any damage. For example they need sensor for balanced movement

or a sensor to hear instructions or facial sensors to make facial expressions.

AI-based interactions - human interactions with humanoids can be

CHAPTER 3. RESEARCH 9

mimic limited. It can help artificial intelligence to understand human ram-

blings and give it back in the form of replies.

3.2 Humanoid robot model and simulators

In this part we will discuss the humanoid body movements, systems to draw

the robot parts, robot description formats and simulators. What kind of

solutions exist to create a 3D model and we will use this model for some

simulations of movement.

3.2.1 Degree of Freedom

A humanoid robot was made to mimic humans, therefore its body parts like

legs are able to move on its own. The number of Degree of Freedom (DOF) is

given by the number of their joint actuators. According humans, humanoids´

body moves in next three planes [SRR11].

• transverse(axial) plane: This plane is an imaginary plane that divides

the body into inferior and superior.

• frontal(coronal) plane: This plane is perpendicular to the sagittal plane

and divides the body into front and back.

• sagittal plane: This plane divides the body into right and left sides.

Let us take an example from NAO [SRR11] robot model. In the picture

we will see the location of actuators and their rotation movement. There are

3 DOF’s located in each legs. These are in the hip (DOF 4), knee (DOF 3)

and ankle (DOF 1) and moving leg in the sagittal plane. Actuators in the

CHAPTER 3. RESEARCH 10

ankle (DOF 2) and hip (DOF 5) move on frontal plane and DOF 6 in the

hip the leg moves in the transverse plane.

Figure 3.4: Human body planes and NAO joint’s configuration adopted from
[SRR11]

3.2.2 Modelling software

Further to make a 3D model of a humanoid robot we need a software where

we can draw 2D and 3D shapes. In this part we will focus on three CAD

software which we will use at implementation to draw robot body parts. Let

us first evaluate the suitability of various software tools with respect to the

relevance to our purpose

We will divide applications, which we use for 3D design, into 2 groups.

First group is CAD (Computer aided design) software and the second is 3D

modelling software. Even though both software make the same thing, CAD

is usually used to create mechanical objects or industrial objects and 3D

modelling grants wide artistic freedom.

Here we will discuss the CAD applications. The software contains a wide

range of tools whose functions are used for industrial design, architecture or

CHAPTER 3. RESEARCH 11

aerospace engineering. A CAD model includes information like dimensions,

tolerance and material type. Many CAD applications can render and animate

objects effectively to better visualise the product. You will choose to save this

objects to STL (stereolithography) file format which is used by 3D printers.

We have chosen three CAD systems: TinkerCAD, SolidWorks and Auto-

CAD

TinkerCAD - This application is an online 3D app coming from Au-

todesk allowing you to create models from basic shapes and a lot of libraries

exist which allow users to select the best shape and to manipulate with them.

TinkerCAD has a direct cooperation with third party printing services and

it is aimed for people with no experience.

SolidWorks - It was released by Dassault Systèmes. Software is a para-

metric featured-based model. In contrast with TinkerCAD this application

has a design validation tool. SolidWorks uses a system called NURBS, which

allows drawing detailed curvatures. A big disadvantage is the limited ability

to import STL files. This sotware is aimed for professionals and that can be

seen on the high price too.

AutoCAD - It is a software created by AutoDesk and it was the first

CAD software released in 1982. AutoCAD is very popular across industries.

This application is not only for 3D modelling but for 2D drafting, too. Au-

toCAD is aimed for people with mid level. Advantage of this software is that

it can import and export STL format very well.

3.2.3 Robot description formats

People like making things easier everywhere. In modelling, people prefer

human-readable and code-independent way of describing a robot body and

physics or their cells. For example, in CAD systems it looks like this: one part

CHAPTER 3. RESEARCH 12

of the body is 20cm right of another part and has square-mesh for display

design. The robot description format allows the user to define the robot

construction, physics, kinematics, shape etc. in structure, which is unified

and easy to read. For the robot description purpose we have the following

robot description formats:

• URDF (Unified robot description format): It is a standard robot

description format which describes many robots very well. URDF

[SZK17] is using XML specifications for describing the robot´s kine-

matic and dynamic properties, physical geometry, collision model and

sensor locations. In this format a robot consists of links which are cou-

pled with joints. Joints describe connection between them with many

other information.

<?xml version="1.0">

<robot name="my_robot">

<link name="link_name">

<visual>

<origin rpy="1.57025 0 0" xyz="0 0 0" />

</visual>

...

</link>

<joint name="joint_name" type="fixed">

...

</joint>

<plugin filename="filename.ext" name="my_plugin" />

...

</robot>

CHAPTER 3. RESEARCH 13

• SDF [SZK17] (Simulation description format): It is based on XML

format and it was originally created for Gazebo. Disadvantage of this

format is that it is only usable in Gazebo environment. SDF describes

objects and environment for robot simulators.

<?xml version="1.0">

<sdf version="1.5">

<word name="default">

<physics type="ode">

...

</physics>

<scene>

...

</scene>

<light>

...

</light>

</word>

<model name="cube">

<pose>0 0 0.5 0 0 0</pose>

<static>false</static>

<link name="link_name">

<pose>0 0 0 0 0 0</pose>

...

</link>

<joint type="fixed" name="joint_name">

...

</joint>

<plugin filename="filename.ext" name="my_plugin" />

CHAPTER 3. RESEARCH 14

...

</model>

</robot>

• XACRO: Xacro is a macro language based on XML structure. This

format expands the large XML files into small parts by using macros.

This format is used in large documents similarly to robot descriptions.

Sometimes Xacro is used to simplify URDF format. We show a peace

of Xacro code adapt from [SG].

<xacro:macro name="pr2_arm" params="suffix parent reflect">

<pr2_upperarm suffix="${suffix}" reflect="${reflect}"

parent="${parent}" />

<pr2_forearm suffix="${suffix}" reflect="${reflect}"

parent="elbow_flex_${suffix}" />

</xacro:macro>

<xacro:pr2_arm suffix="left" reflect="1" parent="torso" />

<xacro:pr2_arm suffix="right" reflect="-1" parent="torso" />

3.3 Robot simulators and comparison

Robot simulators are software which allow to simulate the real machine in-

teractions in the selected environment. Usually a user creates the robot body

with links, actuators and sensors and by a camera he follows the robot in-

teractions during the simulation. In simulations the simulator contains the

physics engine which would concur with the physics of the real world. Many

robot simulators attempt a 3D view, which allows for user to follow up the

CHAPTER 3. RESEARCH 15

robot behaviour in the selected environment. If the user sets the right settings

for the robot then the real robot should have an identical behaviour. Let us

see three robot simulators, how they work and what are their advantages or

disadvantages.

3.3.1 V-REP simulator

V-REP [PGPW18] is a very feature-rich simulation environment that con-

tains large and small scenes and a model editor. It has rich libraries to

produce models and the biggest advantage is that V-REP allows a real-time

mesh manipulation. Another advantage of V-REP is that it offers free li-

cence for education purpose. This simulator is available for MacOS, Linux

and Windows. In case of built-in capabilities V-REP includes many default

engines such as Bullet 2.78, Bullet 2.83, ODE, Vortex and Newton. After

starting the simulator we will see a code and a scene editor. The simulator has

several aspects to control the simulation. One of these aspects are embedded

scripts. It is very flexible, it has the best compatibility in terms of other in-

stallations and the embedded script is written in Lua programming language.

Other popular aspects are ROS node, remote API or different plugins. From

robot and model side, V-REP provides a wide collection of robots, actuators

and sensors. The application allows us to manipulate and to simplify the

model. The user has various options to create runnable scripts. Besides that

V-REP includes plug-ins, ROS nodes and accepts Remote API connection.

3.3.2 Gazebo robot simulator

Gazebo [PGPW18] is used for bigger simulations like V-REP but the interface

and the robot models are simpler. This simulator is available for MacOS,

Linux and Windows too. As regards to built-in capabilities Gazebo allows

CHAPTER 3. RESEARCH 16

only one physics engine end that is ODE. Next disadvantage in contrast

with V-REP is that gazebo allows to import meshes as single objects, but

these objects cannot be changed. The user can find lower number of libraries

of default robot models but their documentations are defective. In case of

programming methods Gazebo has a scene and a code editor too like V-REP,

but it has fewer options for programming functionality. This application

supports compiled C++ plug-ins or ROS programs. Gazebo has relatively

good documentation and there exist many tutorials to learn how to make

simulations but its documentation is a little behind V-REP simulator. An

advantage is that creators will fully support the simulator in the feature and

the development road map is available on their official website.

3.3.3 ARGoS robot simulator

ARGoS [PGPW18] was not really designed for big simulations, but it is a

good choice for swarm robotics task simulations, for example flocking or col-

lective foraging. In contrast with the two simulators which were mentioned

in the section above, Gazebo does not allow to import 3D meshes and the

OpenGL is used for the representation of objects. ARGoS has custom-built

physics engine with limited capabilities. For programming methods this ap-

plication supports scripts written in Lua or C++ languages. What is very

advantageous that the scene is saved as XML file and because the other

simulators support this format, they can import this file and run a robot

simulation. Nowadays, ARGoS is less used, but for small simulation it is

excellent.

CHAPTER 3. RESEARCH 17

3.4 Mass properties

Mass can be defined either as a property or a measure of physical body. By

the term property we mean any measurable property, which describes the

state of an object and the term measure to express the inertia of physical

body. When we talk about the mechanics of a complex object it consists of

the combination of Newton’s laws. In this section we discuss how Newton’s

[RPFS13] laws influence complicated objects.

3.4.1 Center of Mass

The complicated objects has several kinds as water flowing or galaxies whirling.

At the beginning let us define a simple object what is called the rigid body.

This rigid body is turning while in motion. The motion can be either simple

or complex. Let us take the simplest motion of an object where the body

rotates according to a fixed axis. This motion is based at a certain point on

a body which moves in a plane perpendicular to this axis. Such rotation is

called plane rotation or rotation in two dimensions.

Let us consider the first theorem of motion of complicated objects. This

can be better depicted with a particular example. Imagine an object which

consists of blocks and spokes which are connected with strings. When you

throw it, you observe that there will be an effective center which moves

in parabola. That implicates our theorem of the center of mass, which

say[RPFS13]: there is a mean position which is mathematically definable,

it does not have to be a point of the material itself. So let us consider any

object which consists of little particles with different forces among them. Let

us define i as index of one particle. Then the force on the i-th particle we

CHAPTER 3. RESEARCH 18

can express as follow:

Fi = mi(d
2ri/dt

2) (3.1)

In circumstances when all parts are moving slower than the speed of light

and we use the nonrelativistic approximation, in that case mass is constant

and we can express it as[RPFS13]:

Fi = d2(miri)/dt
2 (3.2)

Next, from that we compute the total force F by the sum of all forces for all

different indexes:

∑
i

Fi = F =
d2(

∑
imiri)

dt2
(3.3)

At this state we have an equation by which we compute the total force.

Now we need to rewrite this equation as the total mass times some acceler-

ation. Let define M which is a total mass. Then the certain vector R looks

like:

R =
∑
i

miri/M (3.4)

After that we can simply express

F = d2(MR)/dt2 = M(d2R/dt2) (3.5)

Since M is constant the equation 3.5 is correct. At the end we consider

that we can express the external force by the total mass times the acceleration

of an imaginary point whose location is R. We call this point as center of

mass of the rigid body.

CHAPTER 3. RESEARCH 19

3.4.2 Moment of inertia

The moment of inertia or in other words rotational inertia is a quantitative

measure that determines the torque needed for rotational motion about rota-

tion axis. Rotational inertia depends on mass and the selected axis, because

it is important how the mass is distributed around rotational axis and it will

change depending on the selected axis. When we talk about point-like mass

the moment of inertia is given by mr2. In this formula m is the mass and r

is the distance from an axis to a point. In other words, rotational inertia for

a rigid body is a sum of all the parts of mass multiplied by the square of its

distances from the selected axis.

You can find moment of inertia in Newton’s laws of motion of a rigid

body where its shape and mass are combined. There are some differences

when we speak about planar or spatial movements. Moment of inertia in the

first case is a scalar and in the second case is a symmetric 3x3 matrix called

inertia tensor or inertia matrix.

Finding the rotation inertia for different objects can be a bit problematic.

Let us see how to get it. We can express the moment of inertia about the

z-axis as follows [RPFS13]:

I =
∑
i

mi(x
2
i + y2

i) (3.6)

or

I =

∫
(x2 + y2)dm =

∫
(x2 + y2)pdV (3.7)

According to the formula 3.6, we get the inertia when we sum all the

masses and then multiply it by the distance x2
i + y2

i from the axis. Even if

we talk about the three-dimensional object we have to square only the two-

dimensional distance. In three-dimensions the formula for rotation is about

CHAPTER 3. RESEARCH 20

the z-axis.

Let us see an example to consider how to compute the moment of inertia

for a rod, which is rotating about a perpendicular axis. Now, in this case

y being zero and it is enough to sum all the masses and multiply it by the

x-distances squared.[RPFS13]

Figure 3.5: Straight rod rotating around an axis adopted from [RPFS13]

Divide the rod into small pieces of length dx. If dx is the total length of

the rod and mass will be M, then applies the following:

dm = Mdx/L (3.8)

After that, we know the sum, which is the integral of x2 and the dm,then

we write:

I =

∫ L

0

x2Mdx

L
=
M

L

∫ L

0

x2dx =
ML2

3
(3.9)

The moment of inertia is the mass times the length squared, but the im-

portant part is the factor 1/3 with the help of the integral. The computation

3.9 will demonstrate when the rotation axis is on the end of the rod. If we

want the rotation axis to be in the middle of the rod we have to compute the

integral again between the range from −1
2
L to +1

2
L. But we could solve this

more easily if we divided the rod into two parts where each the mass will be

CHAPTER 3. RESEARCH 21

M/2 and the length L/2. After that we will write the next formula

I =
2(M/2)(L/2)2

3
=
ML2

12
(3.10)

We could compute the moment of inertia for many various bodies. But

what is more important, there is a theorem which is interesting at this part.

This theorem is called the parallel-axis theorem. Let us describe what this

theorem means. Imagine that we have an object and we want to find the

moment of inertia needed for the rotation around any axis. We suppose that

we support the object on pivots at the center of mass. When we do that

and we start moving it, then the object will not rotate around the selected

axis. To make a body move we need the same forces as when the mass were

concentrated at the center of the mass, so for the rotation inertia we will

write

I1 = MR2
CM (3.11)

where RCM or RCOM is the distance from the axis to the center of the

mass. But we must note, that the formula 3.11 is not a right formula, because

not only the center of the body is moving in a circle, but we must turn it

around its center of mass. At the end to I1 we need to add the rotation

inertia Ic. So the right formula is supposed to be

I = Ic +MR2
CM (3.12)

This is a parallel-axis theorem. Let us see how to do it. The moment of

inertia is

I =
∑

(x2
i + y2

i)mi

CHAPTER 3. RESEARCH 22

We will explain only the x’s, but the y’s work the same way. We have x,

which is the distance of a particular point mass from the origin. Let us take

x’ from the center of mass and not from the origin. Then we write

xi = x′i +XCM (3.13)

When we square the right side of formula,

x2
i = x′2i + 2XCMx

′
i +X2

CM (3.14)

After that multiply all part by mi, next summed for all i and move the

constants before the summation. We get

Ix =
∑

mix
′2
i + 2XCM

∑
mix

′
i +X2

CM

∑
mi (3.15)

The formula 3.15 is very easy to understand. The first sum is the x part

of Ic. The second sum expresses the total mass which is multiplied with

x’-coordinate of the CM.

3.5 Kinematics

Kinematics deals with the motion of bodies and it does not take into ac-

count the forces which cause the motion. In the field of robot kinematics,

geometry is applied to the movement of kinematic chains which has its own

degree of freedom. It is very difficult and important for an industrial ma-

nipulator to create the best kinematics model for a robot. In kinematics

modelling there are two different spaces. One is the Cartesian space and

the second is the Quaternion space. The transformation in Cartesian co-

ordinate system is divided into rotation and translation. For the rotation

CHAPTER 3. RESEARCH 23

representation we know many ways as Euler angles, Gibbs vector, Cayley-

Klein parameters, Hamilton quaternion’s. Denavit and Hartenberg show that

for the rotation and translation between two consecutive frames we need four

parameters. This convention is called DH convention and these four param-

eters are called D-H parameters. This convention becomes the standard in

the robot kinematics.[KB06]

Figure 3.6: Two coordinate frame systems adopted from [TPS17]

D-H parameters [TPS17] are

• Link length (ai): this is the distance between z0 and z1. We

could express it with (Trans,z,ai)

• Link offset (di): it is the distance from origin O0 to the intersec-

tion of axis x1 with z0. We could express it with (Trans, z, ai)

• Joint angle (Θi): angle from x0 and x1 measured in plane normal

to z0. We could express it with (ROT,z,Θi)

• Link twist (αi): angle between Z0 and Z1, measured in plane nor-

mal to X1 axis. We could express it with (ROT, x, αi)

CHAPTER 3. RESEARCH 24

The robot kinematics consists of two types, the forward or direct kine-

matics and inverse kinematics. The first type is easier because there is no

deriving the equations. The second is a more difficult problem, because it is

computationally expensive thanks to properties of singularity and nonlinear-

ity, and the control of manipulators takes a long time. What is very useful in

forward kinematics is that you always find a kinematic solution for manipu-

lators. You can see the relationship between forward and inverse kinematics

in the picture below

Figure 3.7: Relationship between forward and inverse kinematics adopted
from [TPS17]

To solve the inverse kinematics problems we know two main methods

numerical and analytical. At the numerical method we get the joint variables

from numerical solution and at the analytical we follow the configuration

data. Next, there are two approaches for the analytical solution: geometric

and algebraic. The geometric solution is applied to the simplest structures

and to complicated structures as arm extended into three dimension.

CHAPTER 3. RESEARCH 25

3.5.1 Forward kinematics

If we know the values for the joint variables we can determine the position and

orientation of end-effector. When we talk about revolute or rotational joint,

the joint variables are angles between the links and in the case of prismatic

and sliding joints the variables are angles between the link extension.

Let us take a robot with n joints. This robot has n+1 links if each joint

connects two links. Then we define the joints from 1 to n and links from

0 to n. In this order the link with number 0 is the base link and the i-th

joint connects link i-1 to link i. The base link is fixed and link i moves, when

joint i is actuated. Now for every joint has to be associated a joint variable.

Denote it with qi. The meaning of the joint variable depends on the type of

joint. [Don]

Figure 3.8: Joint variable meaning for revolute and prismatic joint adopted
from [Don]

When we speak about revolute joint then the joint variable is the angle

of rotation and in terms of prismatic joint the joint variable is the joint

displacement. To show the kinematic analysis, in the picture below we add

a coordinate frame to each link.[Don]

CHAPTER 3. RESEARCH 26

Figure 3.9: Coordinate frames added to elbow links adopted from [Don]

To the link i we attach oixiyizi [Don]. When a robot executes whatever

motion, each point on the link i is constant in case when coordinates are

expressed in the i-th coordinate frame. Moreover the actuation of joint i

has an impact on its attached frame (oixiyizi). The robot base we call the

inertial frame and we denote it o0x0y0z0.

When we have the coordinate frames, we suppose the homogeneous trans-

formation matrix Ai which expresses the position and orientation of oixiyizi

regarding the link i - 1 frame, that means the oi−1xi−1yi−1zi−1 [Don]. The

transformation matrix changes according to the configuration of the robot.

We can deduce, then Ai exists as a function of a single joint variable, which

means

Ai = Ai(qi) (3.16)

We already know that the homogeneous transformation matrix which

expresses the pose of ojxjyjzj regarding oixiyizi is called a transformation

matrix[Don], and it is labeled as T ij . Let us introduce some equations which

CHAPTER 3. RESEARCH 27

apply

T ij = Ai+1Ai+2...Aj−1Aj if i < j (3.17)

T ij = I if i = j (3.18)

T ij = (T ji)−1 if j > i (3.19)

We have added the coordinate frame to all the links, henceforward any

point on the end-effector will be constant, independent from a robot config-

uration. Pose of the end-effector regarding the base frame is expressed by

a three-vector O0
n and with the 3x3 rotation matrix R0

n [Don]. Using these

relationships we can define the homogeneous transformation matrix

H =

R0
n O0

n

0 1

 (3.20)

Then the pose of the end-effector in the base frame is the next

H = T 0
n = A1(q1)...An(qn) (3.21)

Then each homogeneous transformation matrix has the following form

Ai =

Ri−1
i Oi−1

i

0 1

 (3.22)

So

T ij = Ai+1...Aj =

Ri
j Oi

j

0 1

 (3.23)

CHAPTER 3. RESEARCH 28

The matrix Ri
j is the orientation of ojxjyjzj relative to oixiyizi. It de-

scribes the rotational part of the homogeneous matrices. We will write it as

follows [Don]

Ri
j = Ri

i+1...R
j−1
j (3.24)

We can write the coordinate vectors Oi
j recursively as

Oi
j = Oi

j−1 +Ri
j−1O

j−1
j (3.25)

This is the forward kinematics. But there exists a better solution which

contains simplifications. That convention is called the Denavit-Hartenberg

representation.

In the previous solution we attached a coordinate frame for all links, but

it would be good to be systematic. That means we need to be careful about

the frame choices. In kinematics introduction we introduced the mostly used

convention for selecting frames. This could be the Denavit-Hartenberg or D-

H convention. This convention represents each homogeneous transformation

CHAPTER 3. RESEARCH 29

Ai as a product of four transformations. [Don]

Ai = Rz,Θi
Transz,diTransx,aiRx,αi

=

cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1

=

cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1

(3.26)

As we noticed at the beginning the θi, ai, di, αi are the D-H parameters

and these are called joint angle, link length, link offset and link twist. The

matrix Ai is a function of a single variable which is the joint variable.

3.5.2 Inverse kinematics

The inverse kinematics is needed in the control of robot manipulators. Com-

putationally it is very expensive and it takes a long time to control the ma-

nipulators. Tasks are in the Cartesian space and actuators are in the joint

space. In the Cartesian space we have an orientation matrix and position

vector while the joint space is represented by the joint angles. The conver-

sion between the Cartesian space and the joint space is called the inverse

kinematics problem. There are two types of solutions: the geometric and the

algebraic. Let us see the algebraic solution.[KB06]

CHAPTER 3. RESEARCH 30

3.5.2.1 Geometric solution

The geometric solution breaks down the spatial geometry of the robot ma-

nipulators into several plane geometries. Let us have a simple structure like

planer manipulator which has two degree of freedom. The joints are both

revolute which connect the links. The lengths are expressed as l1 and l2

[KB06].

Figure 3.10: Planar manipulator with 2-DOF adopted from [KB06]

In the next picture we can see the derived kinematics equations for the

planar manipulator.

CHAPTER 3. RESEARCH 31

Figure 3.11: Derived equations for a planar manipulator adopted from [KB06]

The components px and py of the point P are expressed as

px = l1cθ1 + l2cθ12 (3.27)

py = l1sθ1 + l2sθ12 (3.28)

The expression [KB06] cθ12 = cθ1cθ2 − sθ1sθ2 and sθ12 = sθ1cθ2 + cθ1sθ2.

The θ2 we can compute from the summation of equations 3.27 and 3.28.

p2
x = l21c

2θ1 + l22c
2θ12 + 2l1l2cθ1cθ12

p2
y = l21s

2θ1 + l22s
2θ12 + 2l1l2sθ1sθ12

p2
x + p2

y = l21(c2θ1 + s2θ1) + l22(c2θ12 + s2θ12) + 2l1l2(cθ1cθ12 + sθ1sθ12)

When we know c2θ1 + s2θ1 = 1 then we can simplify the equation like

p2
x + p2

y = l21 + l22 + 2l1l2(cθ1[cθ1cθ2 − sθ1sθ2] + sθ1[sθ1cθ2 + cθ1sθ2])

p2
x + p2

y = l21 + l22 + 2l1l2(c2θ1cθ2 − cθ1sθ1sθ2 + s2θ1cθ2 + cθ1sθ1sθ2)

p2
x + p2

y = l21 + l22 + 2l1l2(cθ2[c2θ1 + s2θ1])

p2
x + p2

y = l21 + l22 + 2l1l2cθ2

CHAPTER 3. RESEARCH 32

We can express from this cθ2 like

cθ2 =
p2
x + p2

y − l21 − l22
2l1l2

(3.29)

Since, c2θi + s2θi = 1 where i = 1, 2, 3,, sθ2 is expressed as

sθ2 =
+−

√
1 − (

p2
x + p2

y − l21 − l22
2l1l2

)2 (3.30)

At last, the solutions for the θ2 can be written as

θ2 = atan2(
+−

√
1 − (

p2
x + p2

y − l21 − l22
2l1l2

)2,
p2
x + p2

y − l21 − l22
2l1l2

) (3.31)

Let us find the solution of θ1. Now we known θ2 and we need to multiply

the equation 3.27 by cθ1 and equation 3.28 by sθ1. So we get [KB06]

cθ1px = l1c
2θ1 + l2c

2θ1cθ2 − l2cθ1sθ1sθ2

sθ1py = l1s
2θ1 + l2s

2θ1cθ2 + l2cθ2(c2θ1 + s2θ1)

cθ1px + sθ1py = l1(c2θ1 + s2θ1) + l2cθ2(c2θ1 + s2θ1)

We can simplify the equation as

cθ1px + sθ1py = l1 + l2cθ2 (3.32)

In the next step, we multiply the equation 3.27 by −sθ1 and equation

3.28 by cθ1

−sθ1px = −l1sθ1cθ1 − l2sθ1cθ1cθ2 + l2s
2θ1sθ2

cθ1py = l1sθ1cθ1 + l2cθ1sθ1cθ2 + l2c
2θ1sθ2

−sθ1px + cθ1px = l2sθ2(c2θ1 + s2θ1)

CHAPTER 3. RESEARCH 33

After the simplification we get the expression

−sθ1px + cθ1py = l2sθ2 (3.33)

Now, we need to multiply equation 3.32 by px and equation 3.33 by py

and after that sum these equations to get cθ1 [KB06].

cθ1p
2
x + sθ1pxpy = px(l1 + l2cθ2)

−sθ1pxpy + cθ1p
2
y = pyl2sθ2

cθ1(p2
x + p2

y) = px(l1 + l2cθ2) + pyl2sθ2

When we adjust the last equation, then we get

cθ1 =
px(l1 + l2cθ2) + pyl2sθ2

p2
x + p2

y

(3.34)

So, sθ1 is given by

sθ1 = +−

√
1 − (

px(l1 + l2cθ2) + pyl2sθ2

p2
x + p2

y

)2 (3.35)

At last, the solutions for the θ1 can be written as

θ1 = atan2(+−

√
1 − (

px(l1 + l2cθ2) + pyl2sθ2

p2
x + p2

y

)2,
px(l1 + l2cθ2) + pyl2sθ2

p2
x + p2

y

)

(3.36)

While we have above the computation for a very simple structure, as can

you seen it was not so easy.

3.5.2.2 Algebraic solution

If we have a robot manipulator which is more difficult, for example an arm

which extends into three dimensions the geometry will be more complex.

CHAPTER 3. RESEARCH 34

To deal with this problem the algebraic approach is the best way. Let us

consider a robot manipulator with six joints and the pose of its end-effector

regarding base is given by [KB06]

T 0
6 =

r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 = T 0
1 (q1)T 1

2 (q2)T 2
3 (q3)T 3

4 (q4)T 4
5 (q5)T 5

6 (q6)

So we can find a solution for joint q1 as a function of the T transformation

matrix. We will use the link transformation inverses as multiplication.

[T 0
1 (q1)]−1T 0

6 = [T 0
1 (q1)]−1T 0

1 (q1)T 1
2 (q2)T 2

3 (q3)T 3
4 (q4)T 4

5 (q5)T 5
6 (q6)

[T 0
1 (q1)]−1T 0

1 (q1) = I where I is an identity matrix. Taking this into

account, the above shown equation will be changed to [KB06]

[T 0
1 (q1)]−1T 0

6 = T 1
2 (q2)T 2

3 (q3)T 3
4 (q4)T 4

5 (q5)T 5
6 (q6)

We will find the other joint variables with the same method as

[T 0
1 (q1)T 1

2 (q2)]−1T 0
6 = T 2

3 (q3)T 3
4 (q4)T 4

5 (q5)T 5
6 (q6)

[T 0
1 (q1)T 1

2 (q2)T 2
3 (q3)]−1T 0

6 = T 3
4 (q4)T 4

5 (q5)T 5
6 (q6)

[T 0
1 (q1)T 1

2 (q2)T 2
3 (q3)T 3

4 (q4)]−1T 0
6 = T 4

5 (q5)T 5
6 (q6)

CHAPTER 3. RESEARCH 35

[T 0
1 (q1)T 1

2 (q2)T 2
3 (q3)T 3

4 (q4)T 4
5 (q5)]−1T 0

6 = T 5
6 (q6)

If the elements on the left side of the equation, that are functions q1, we

calculate using the right side element, then q1 can be computed as functions

of r11, r12, ... r33, px, py, pz and the fixed link parameters. If q1 is solved,

then joint variables can be solved similarly q2, q3, q4, q5, q6. [KB06]

Chapter 4

Design of robot Lilli model

In this section we introduce how our robot was designed, what is the best way

to build the clean model which is a base structure for the simulator. Next we

show the right shapes, joint types and usages, how the dynamic shapes would

look like, what is a model definition and how to design the URDF format for

our robot too. In the second part of the design we are going to describe the

simulator, appearance of the scene, the definition of the model in the scene,

robot control via remote API, inverse kinematics solver and its function, IK

and FK solving and calculation methods. At the end, we acquire the best

practices how to build the clean model not only for our robot, but also for

others. We give the reader an overview how to use inverse kinematics solver

and methods for the simulation.

4.1 Clean model

This section describes the process of building the clean model, which we will

use for a simulation. Building a clean model, of a robot or any robot manip-

ulator is very important. We give the clean model not only good looks, but

36

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 37

what is more important is fast displaying, fast simulating and the main rea-

son is the stable model. In the next subsections we describe which shapes are

the best choice for the model, the joint definition, dynamic shapes if we want

the robot to be dynamically enabled and the model definition. Of course, we

have chosen the CoppeliaSim (V-REP) simulator for the simulation purpose

and we need to pay attention to the convention between the simulator and

the model. For this reason our model must contain the correct shapes, joints

and it has to have the right model definition. Of course we have a few choices

to define the clean model and at the end of this section we will know what

they are.

4.1.1 Shapes

When we build a new model, then the first thing is to handle its visual

aspect. In CoppeliaSim we either create primitive shapes directly or our

second choice is to import a mesh from an external application. When we do

this through the simulator then we have a choice to select from pure shapes

or regular shapes. Pure shape is generally optimized for dynamic interaction

and it is dynamically enabled.

When importing CAD shape or model to the simulator, then we need to

check if the model is not too heavy. Heavy means that it contains too many

triangles and it slows down the calculations.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 38

Figure 4.1: A complex CAD model adopted from [Copa]

In the picture you see a very heavy model which contains many triangles

and when you need this model to interact with another robots or parts or

with the environment then the scene becomes too slow and simulation cal-

culations too. Generally, the recommended total count of triangles for the

robot manipulator is maximum 20 000. What you need to pay attention to

is how your shape is built. You need to exclude from the shape model as

few as possible holes, small details, because it requires a lot of triangular

faces, and you need to exclude also the inside of objects. The last important

thing is set the level of details while the mesh is exported from CAD system.

Firstly, export the large objects with adjusted precision and after that the

small objects with a set up precision.

Before you start modeling your shapes, it is good to know which CAD

data is supported by CoppeliaSim. These formats are the following: STL,

DXF, OBJ and Collada. There are two other types which support Cop-

peliaSim. These formats are SDF and URDF format. These are not pure

mesh-based file formats, but both have their advantages to describe the robot

manipulator.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 39

4.1.2 Joints

When we know, how to model our shapes, then the next important part is

joints. For defining the robot joints we have more ways to do so. CoppeliaSim

allows to define our joint position and orientation directly in the simulator.

This can be done in two ways. First, if we know the position and orientation

of joints then with a dialog window we simply pose it. The second, when we

have only the Denavit-Hartenberg parameters. For this purpose CoppeliaSim

offers the possibility to build the joints via tool model which is located in

the model browser. In case we do not know the position and orientation of

the joints we can extract them from the imported meshes. The next way is

to define the joint in URDF or SDF file. In this case the joint definition is

similar as we use the <Joint> xml element which describes the kinematics

and dynamics of the joint. This element has many properties which describe

the joint properties.

Figure 4.2: <Joint> element for describing the joint in URDF

And in SDF this looks like

Figure 4.3: <Joint> element in SDF

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 40

Next in CoppeliaSim a joint has two reference frames. The first frame is

fixed and the second is not. The second frame will move relatively to the

first frame depending on the joint configuration. CoppeliaSim supports four

joint types which are revolute, prismatic, spherical joint and screws.

Figure 4.4: Four joint types in order revolute, prismatic, screws and spherical
joint adopted from [Copb]

• Revolute joint - connects two links which have 1 DOF and it is used for

rotational movement. This movement has its upper and lower limits.

Usually the value is defined in radians.

• Prismatic joint - connects two links which have one DOF and it is used

for translational movement. It has an upper and lower limit range.

• Spherical joint - this joint realizes multi DOF motion, it has three

values which describe the rotation around the first reference frame.

These values are the Euler angles.

• Screws - it is a combination of revolute and prismatic joint. It has one

DOF and a movement similar to the screw.

CoppeliaSim enables some modes for the joints. These modes are passive,

inverse kinematics, dependent, motion and torque or force mode. When a

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 41

joint is in the passive mode it behaves as a fixed link. In inverse kinematics

mode a joint acts according to inverse kinematics calculations. In the depen-

dent mode a joint is linked with another joint by linear equation. The last

mode, torque or force mode is set when the joint is simulated by the selected

physics engine.

4.1.3 Dynamic shapes

We want shapes to be dynamically enabled, but some cases we need to con-

figure manually. This means our robot will fall, react to collisions etc.. Let

us see what properties the shape has. Shape can be dynamic or static

and respondable or non-respondable. Dynamic shape falls out and it is

affected by forces, till the static shape stays in place or follows the parent

movements. The second property respondable is responsible for a collision re-

action when two respondable shapes collide. If the shape is non-respondable,

then shapes do not compute the collision response.

While building a clean model, we have to be careful which types of shapes

can physics engine simulate. There are 5 types:

• Pure shapes - these are stable and efficiently handled by the physics

engine, but they are limited in geometry.

• Pure compound shapes - these are groups of several pure shapes and

the same goes for it regarding the properties.

• Convex shapes - convex shapes are less stable and the physics engine

handle these shapes a little bit worse than pure shapes.

• Convex decomposed shapes - these are groups of convex shapes and

their properties are similar to convex shapes

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 42

• Random shapes - random shapes have a poor performance and it is not

recommended to use these shapes in CoppeliaSim

4.1.4 Model definition

Our selected robot simulator has its own model definition. The model is a

part of the scene and exists only in the "*.ttm" file. We understand this

model as a group of scene objects built according to the tree structure. This

model always has a base part which is called a model base. Various objects

need to connect to the model base to create the right model. The right model

looks like as follows

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 43

Figure 4.5: Scene hierarchy

If you need, you will protect the model, which does not allow manipulation

by individual objects. Except of this you can do more settings to manipulate

with the model, but at this point it is enough to know the above mentioned

facts.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 44

4.1.5 URDF

We introduce important parts of the clean model as the manipulator shapes,

joints and the dynamic property of shapes. At this point we know how various

shapes can be modeled for the best performance at the simulator, how to

select or define joints instead of servos, the dynamically enabled shapes for

simulation purpose and how the model definition looks like in our selected

simulator. As the next step, we must clear how to get the robot manipulator

into the simulator, where all parts of the robot are modeled via CAD system.

Indeed, we have the option to import all CAD parts separately, but then we

need to create the tree structure inside the simulator. It is not the best way

because when we need to use the robot manipulator in another simulator,

then we need to build all tree structure again. For this purpose we selected

the URDF file format, which gives us a very nice structure to describe the

robot links, joints and their relationship. URDF uses the XML format to

describe all elements of a robot. With this description format we are able to

describe simple and complex robot manipulator structures. Let us see how

URDF builds a complete robot manipulator. At first we define the <robot>

element which has name property. Inside the robot element you must define

the links and joints. The model has a tree structure and we can deduce that

we have parent-child relationships between joints and links. That means a

joint connects two links and it cannot happen that another link is connected

to this link. There exists a way to define this relation, but you need to define

instead of a link a fixed joint type and manipulate with the layers in the

simulator. Furthermore, you need to position another visible object to the

joint position. Usually the first link is the model base object. Next is the

child link and after it the joint, which connects the pairs. In the picture

below you can see which elements are usually required to describe a robot.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 45

Figure 4.6: one link and one joint definition in URDF

The link element has three important tags. First is the tag <inertial>

which includes the center of mass of the link, the mass and 6 above-diagonal

elements from the moment of inertia matrix. The next two tags the <visual>

and <collision> tags have almost the same inner elements. They both have

an origin definition and geometry. Geometry describes the link visual ap-

pearance by mesh or some primitive shapes like cube or cylinder etc.. When

you describe the joint you must define its name, parent, child, the rotation

axis and the joint limits. Joint limits contain the maximum force supported

by a joint, upper and lower angle limits and the velocity, which enforces the

maximum joint velocity.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 46

4.2 The simulator

According to the previous section, we know how to build the clean model

and how to wrap it to the sake of the simulator. In this section we introduce

the simulator itself. Every simulator has its own characteristic, but we need

to focus on our selected simulator which is CoppeliaSim. We show how the

scene looks like and what elements are specific to it, next we describe the

simulation script and the main script. After that we show the programming

language and external application for communication with the simulations,

the calculation modules like the inverse kinematics module. We introduce

how to define inverse kinematics groups and elements and which methods

are used for the calculation itself.

4.2.1 Scenes

The scene contains the same type of elements as the models, but the scene

has some specific elements which are the following: the main script, the

environment, pages and views.

The main script serves as the simulation script. Each scene usually has

one main script. The main script has its own structure and functions, which

allow a simulation to run. Typically the main script has four functions by

default, which are called by the system. These function are:

• sysCall_init - this function block is executed at the start of the sim-

ulation. At this block usually we write the object handles, variables,

the shape colors etc..

• sysCall_actuation - this function block is responsible for the actua-

tion functionality as inverse kinematics or dynamics etc. and will be

executed in each simulation process.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 47

• sysCall_sensing - as the function name tells, this function block is

responsible for the sensing functionality and it is executed in each sim-

ulation process.

• sysCall_cleanup - the cleanup function is called before the simulation

ends and usually restores the initial configuration.

The environment properties are the following: ambient light, background

colors etc.. These properties are not scene objects, but they are part of the

scene. This parameters are only saved when the scene is saved.

The difference between pages and views is that the page is the main view-

ing surface and page may contain one or more views. The view is displaying

specific objects as the robot model or camera object and others. It can have

floating or fixed position on the page. Each scene has eight pages which we

will configure in several ways.

The default scene consists of the environment, the main script, pages and

views as many as needed, camera objects, light objects and the floor.

4.2.2 Scripts and Remote API

Controlling the robot manipulator during the simulation CoppeliaSim allows

us many possibilities. Simulator allows users to customize every aspect of the

simulation by an integrated script interpreter. The language which is used

to the scripting is called Lua. This language supports common procedural

programming. In the following example we show a simple threaded child

script

function sysCall_threadmain()

jointHandles={-1,-1,-1}

for i=1,3,1 do

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 48

jointHandles[i]=sim.getObjectHandle(’joint_’..i)

end

-- RML vectors:

v=90;a=40;j=80

currentVelocity={0,0,0,0,0,0,0}

currentAcceleration={0,0,0,0,0,0,0}

maxVel={v*math.pi/180,v*math.pi/180,v*math.pi/180}

maxAccel={a*math.pi/180,a*math.pi/180,a*math.pi/180}

maxJerk={j*math.pi/180,j*math.pi/180,j*math.pi/180}

targetVel={0,0,0}

targetPos1={90*math.pi/180,90*math.pi/180,135*math.pi/180}

sim.rmlMoveToJointPositions(jointHandles,-1,currentVelocity,

currentAcceleration,maxVel,maxAccel,maxJerk,targetPos1,targetVel)

targetPos2={-90*math.pi/180,90*math.pi/180,135*math.pi/180}

sim.rmlMoveToJointPositions(jointHandles,-1,currentVelocity,

currentAcceleration,maxVel,maxAccel,maxJerk,targetPos2,targetVel)

targetPos3={0,0,0}

sim.rmlMoveToJointPositions(jointHandles,-1,currentVelocity,

currentAcceleration,maxVel,maxAccel,maxJerk,targetPos3,targetVel)

end

This threaded child script is a simple example how to move joints into

the target position three times. At the beginning we handle all joint objects

from the scene. Next we set variables like velocity, acceleration and jerk

and define the RML (Reflexxes motion library) vectors. At the end we set

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 49

the joint three times to positions targetPos1, tergetPos2, targetPos3. The

rmlMoveToJointPositions is a regular API function, which moves more joints

at the same time using the RML. The above shown example is a child script.

The child script is a simulation script and it represents a particular function

in the simulation. The child script is of two different types

• Non-threaded child scripts - include a group of blocking functions,

which perform some tasks and after then return control. In case the

simulation is halting, then the control is not returned. This type of

child script is called from the main script from sysCall_actuation

and sysCall_sensing.

• Threaded child scripts - these scripts are run in a thread. The threaded

child script is launched from the main script code. It has some disad-

vantages like reaction to the simulation stop instruction.

We can be control the model not only from embedded scripts like Lua,

but there exists a remote API client that allows to control the robot from

an external application using remote API commands. The API commands

interact with the simulator through socket communications. The remote API

function will be called from various programs as Java, Python, Matlab etc.

and allows interaction with the simulator in synchronous and asynchronous

mode. If you need to manipulate with the simulator via remote API you

must enable it on the client side and server side too. There exist other

possibilities, plugins etc. to control a robot, but the above mentioned two

types are sufficient for us.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 50

4.2.3 Calculation Modules

CoppeliaSim allows powerful calculation modules, which operate on one or

more objects. These modules are the following

• dynamics module - this module allows to simulate objects dynamically

• minimum distance calculation module - this module measures, records

and displays the minimum distances between measurable objects.

• collision detection module - this module measures, records and displays

the collisions between collidable objects.

• inverse kinematics calculation module - this module solves the IK or

FK problems.

Some of the above mentioned calculation methods allow the user to define

calculation objects. These objects are linked to the scene objects by operating

on them. Calculation objects rely on objects they are connected with as

collision object relies on collidable object or IK group relies on dummies

where joints have the central role.

4.2.4 Inverse kinematics

The inverse kinematics solver of CoppeliaSim simulator is very flexible. It

allows to solve any type of mechanism in forward or inverse kinematics mode.

As we have already mentioned in the research, the inverse kinematics prob-

lem is finding the joint values, which are corresponding to the position and

orientation of an end-effector. In other words we need to find the transfor-

mation from the Cartesian space to the joint space. The opposite problem,

when we have the joint parameters and we need to find the position of the

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 51

end-effector is the forward kinematics problem. This can be easier than the

IK problem. CoppeliaSim offers recorded results of the IK calculation. For

this purpose the simulator uses graph objects.

4.2.4.1 IK groups and IK elements

Our simulator uses the IK groups and IK elements to solve the inverse kine-

matics problem. In order to be able to use it at 100 percent we need to

understand how inverse kinematics is solved. To solve the kinematic chain,

IK group must contain at least one or more IK elements. This group con-

tains the solving properties as the solving algorithm, maximum iteration

count, etc.. The kinematic chain, which we mentioned before, is specified

by the IK element. One kinematic chain represents one IK element and the

kinematic chain must contain at least one joint. The IK element consist of

• base object - is the first object at the kinematic chain. It can be objects

of any type or a rigid joint. You will select the base object at the dialog

window while creating the IK element.

• some links - you will choose from the model links. The joints, which

are not in IK mode behave as rigid joints.

• some joints - when a joint has not set the IK mode, then it is considered

as a link not a joint.

• a tip - the tip behaves like the end-effector and it is the last object in

the kinematic chain. The tip is represented by a dummy object and it

is linked with the target dummy.

• a target - the target object is always a dummy. The tip dummy follows

the target dummy during the simulation. This means the tip adapts

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 52

the target position and orientation when it is available. The tip and

target dummies form tip-target pair.

The IK elements are described by a kinematic chain. The base or first

object, then several links and joints and at the end the tooltip or sometimes

also called the end-effector. In the picture below, we can see a 3 DOF robot

manipulator with a base-tip pair

Figure 4.7: Kinematic chain describes the IK element

Next we have a possibility to set the behaviour during the simulation of

the kinematic chain. Usually, you want the end-effector to follow the target.

Now, if we start the simulation with some additional parameters, the solver

calculates the joint variables and the tip moves to the target direction. It

is a trivial task. If we have two separate kinematic chains, we need two IK

groups to handle the chains at the same time. In this case the IK groups

order is omissible. A little tougher case is when the IK element is set on the

top of another IK element but they do not share a common joint. It can be

seen in Figure 4.8.

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 53

Figure 4.8: Two kinematic chains share common link

The common shared link is the base2 link. The IK group1 task is the

Tooltip1-Target1 and the IK group2 is the Tooltip2-Target1 kinematic prob-

lem. When the IK solver is solving the Tooltip2-Target2 pair, then the the

Base2 link stays in the same position, but when the solver is solving the

Tooltip1-Target1 pair, then it displaces the Base2 link. Because of that we

must set a sequential solving which means we must solve the IK group1 task

before the IK group2 task.

Next difficult case is when kinematic chains share common joints. In this

case we are simultaneously solving instead of sequential solving. When this

situation happens, then we need group IK elements to one common IK group.

4.2.4.2 Solving IK and FK

The inverse kinematics and forward kinematics use the IK groups and IK

elements to solve kinematic tasks. To successfully configure the calculation

we need to check some settings. These are the following

• defining for the model a base and tip object (first/last)

CHAPTER 4. DESIGN OF ROBOT LILLI MODEL 54

• defining the target dummy, whose position and orientation will be fol-

lowed by the end-effector

• set the IK tip-target pair at tree model

• create and group the IK elements into IK group(s)

• order the IK groups according to the kinematic chains behaviour

• enable inverse kinematic mode in the joint dialog window

• check the IK elements are not overconstrained

Check and specify the tip constraints is important. If the tip has set all

constraints, then it follows the target in the x, y, z directions and keeps the

same orientation. We have to pay attention to properly constrain the tip.

But there exist some cases, when it is not possible. In this case we must use

the dumped calculation method and we must specify the dumping factor. We

need to note, if we check the Alpha-Beta-Gamma constraints in the dialog

window, then the tip will try to take up the same orientation as the target

has and if the Gamma constraint is unchecked, the matched tip z-axis and

target z-axis orientation will freely rotate around the z-axis.

Chapter 5

Implementation

This chapter contains how we implement the individual parts of the design.

We describe the process how we realized 3D model, how AutoCAD works with

2D and 3D objects, rotational inertia for every robot link, robot description

format structure. We will discuss the problem of closed loop chain in URDF

and show our robot 3D model. After that we describe Lilli in CoppeliaSim,

robot control via remote API, physics engine setup and inverse kinematic

solver. We show inverse kinematics calculations for the right arm and the

solution to the dumping problem.

5.1 Building the clean model

5.1.1 AutoCAD and 2D parts

At the beginning, we had at our disposal DXF files from Lilli’s author. This

files contain 2D model of robot parts. Every single part we need to transform

from 2D to 3D shape. By the help of AutoCAD we will easily extrude 2D

objects to 3D. But at this point we had a big problem because every single

part consisted of only lines and we needed to join this lines. After joining

55

CHAPTER 5. IMPLEMENTATION 56

these parts we got closed spline but sometimes extrusion does not work be-

cause of the self-intersecting curve. This problem is solved by BOUNDARY

command in AutoCAD which creates a region or polyline from an enclosed

area. The other and a primitive solution to resolve self-intersecting curve is

to find the line which causes the intersection. After all parts were extruded

into 3D shape we built body parts by using every single object, translation

and rotation.

Figure 5.1: DXF files containing 2D objects

Figure 5.2: A single extruded part

Figure 5.3: Right forearm

CHAPTER 5. IMPLEMENTATION 57

5.1.2 Problem of inertia and utilization of Solidworks

At this point we have all robot manipulators as STL files. We need to describe

the model with URDF file format. First we defined the base link which is

the pelvis of the robot. After that, from the base link we define the other

parent-child relationships between the parts. As the links visual we used the

exported STL files. The links origin is not defined yet. Because of that,

every part x, y, z position are at the same origin. One of the solutions is we

must calculate the right origin for each part by distances and by translation

matrix we transform each part to the right origin. This calculation takes a

lot of calculations and time, but this is not the only problem what we need

to solve. The second problem is the inertial definition of the link element.

This definition contains the x, y, z position of the center of mass, the mass

itself and the 6 above-diagonal elements of rotational inertia matrix. If we

want to calculate the inertia rotation matrix manually, we need to solve the

integral

I =

∫
(x2 + y2)dm =

∫
(x2 + y2)pdV

for each modeled part. Of course we should be careful about the rotation

axis. To solve this problem we used another CAD program which is called

Solidworks. During work, we realized that Solidworks is more flexible than

AutoCAD, because it solves all our problems mentioned above. It is true,

that AutoCAD allows us to compute the center of mass and the moment of

inertia for each link, but Solidworks is capable of a little more. After we

have done the research about Solidworks abilities we came to the differences

between them. Solidworks allows us to calculate the mass properties by the

density part parameter and the visualization of CoM or the origins is much

CHAPTER 5. IMPLEMENTATION 58

better than in AutoCAD. Another reason is that Solidworks solves the origin

problem too. The last reason was the URDF exporter plugin. This plugin

allows us to export the URDF file from Solidworks and it eases building the

tree structure.

5.1.3 3D model

We knew we would continue to use Solidworks. We have each part exported

not only as STL file but as DWG file. Solidworks allows us to import other

CAD models. From each part we create a SLDPRT file where we set the

material to Beech and this gives the part density 560 kg/m3. When we have

each part saved in PART representation Solidworks format, then we draw

the servos and the horns. We use 3 types of servos:

• MG996R servo motor - the stall torque parameters are

4.8V -> 9.4 [kgf·cm] -> 0.9218251 [N·m]

6V -> 12 [kgf·cm] -> 1.176798 [N·m]

• MG90S servo motor - the stall torque parameters are

4.8V -> 1.8 [kgf·cm] -> 0.1765 [N·m]

6V -> 2.2 [kgf·cm] -> 0.215 [N·m]

• DS3225 digital servo motor - the stall torque parameters are

4.8V -> 21 [kgf·cm] -> 2.05844 [N·m]

6V -> 24.5 [kgf·cm] -> 2.4 [N·m]

We use the MG90S servo for the wrist and fingers joint because we need

small force to move these joints. The DS3225 digital servo is at both knees

and both ankles because the upper parts are heavier and the joint needs

more force to load. Next we create assemblies for each parts which contain

CHAPTER 5. IMPLEMENTATION 59

connections to the part, the right servo and the servo horn. An example of

one assembly is shown at Figure 5.4.

Figure 5.4: Robot left hip assembly

Next we build the 3D model from these assemblies. At first, we add

the base link (pelvis) to the model. Solidworks uses mates to define the

geometry relationship between assemblies. At the beginning, we mate the

base link origin with the origin of the assembly. After that we add the other

parts and define the relationship between them via mates.

Figure 5.5: Lilli’s 3D model

Building the 3D model was difficult because we had to understand the

CHAPTER 5. IMPLEMENTATION 60

logic behind the model. After all we successfully built the 3D model which

was shown in Figure 5.5. When the 3D model was completed, we defined the

joint position. Lilli has 25 DOF and because that we define 25 coordinate

systems for the joints. As you see in the next picture the joint coordinate

system is visualized around the rotation axis.

Figure 5.6: Visualised joint axis

Note, in the picture for the gripper there exists only one joint, but we

must define them more to show the problem of closed loop chain. We are

going to discuss this problem in the next section.

CHAPTER 5. IMPLEMENTATION 61

5.1.4 Lilli’s description and closed loop chain problem

At this point we have the 3D model and the coordinate system generated for

each joint. The next step was, that we applied the URDF exporter plugin

and generated the URDF file format. Solidworks allows us to define the link

name, the parent link, the joint name which connects the links, reference

coordinate system for the link, reference axis for the joint and the joint

type. After we defined the parent-child relationships we got the following

tree structure

Figure 5.7: Lilli’s tree structure

Next we exported the URDF file. URDF file contained all robot structure

with the right joint origins. The visual mesh was usable too, we did not have

to translate or rotate the origin directly in the description. Only the joints

limit element was not completed and we have done it manually. The following

CHAPTER 5. IMPLEMENTATION 62

listing shows all the aspects of the description format

<robot name="LilliHumanoid">

<link name="pelvis">

<inertial>

<origin xyz="0.045652 -0.01564 0.078635" rpy="0 0 0" />

<mass value="0.14677" />

<inertia

ixx="0.00021437"

ixy="2.6116E-07"

ixz="-1.2765E-07"

iyy="0.00021725"

iyz="-4.3704E-06"

izz="4.9494E-05" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="package://LillyAll/meshes/pelvis.STL" />

</geometry>

<material name="">

<color rgba="0.75294 0.75294 0.75294 1" />

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh filename="package://LillyAll/meshes/pelvis.STL" />

</geometry>

</collision>

CHAPTER 5. IMPLEMENTATION 63

</link>

<link name="left_hip_clamp">

<inertial>

<origin xyz="0.043299 -0.010259 0.0055623" rpy="0 0 0" />

<mass value="0.048224" />

<inertia

ixx="2.0451E-05"

ixy="4.3281E-08"

ixz="3.9112E-07"

iyy="1.5296E-05"

iyz="1.4602E-07"

izz="2.2881E-05" />

</inertial>

<visual>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh

filename="package://LillyAll/meshes/left_hip_clamp.STL" />

</geometry>

<material name="">

<color rgba="0.75294 0.75294 0.75294 1" />

</material>

</visual>

<collision>

<origin xyz="0 0 0" rpy="0 0 0" />

<geometry>

<mesh

filename="package://LillyAll/meshes/left_hip_clamp.STL" />

</geometry>

CHAPTER 5. IMPLEMENTATION 64

</collision>

</link>

<joint name="l_hip_z" type="revolute">

<origin xyz="0.070848 -2.5108E-05 0.022508" rpy="0 0

-0.00035439" />

<parent link="pelvis" />

<child link="left_hip_clamp" />

<axis xyz="0 1 0" />

<limit effort="1.17" lower="-0.523598775598"

upper="0.497418836818" velocity="8.0"></limit>

</joint>

</robot>

The above shown code snippet represents the base pelvis link and the left

hip clamp link connected via revolute joint. Other links and joints are similar

to this notation with own parameters. The joint limit element we define as

follows. The effort was the stall torque parameter which we mentioned in

previous section. The upper and lower parameter are the minimum and

maximum angles in radians. The velocity parameter was calculated from the

servo velocity parameter, where

• MG996R servo motor - the velocity parameter is

4.8V -> 0.17 [sec/60°] -> 352.94 [degree/sec]

-> 58.823 [RPM] -> 6.1599 [rad/s]

6V -> 0.13 [sec/60°] -> 461.53 [degree/sec] ->

76.9216 [RPM] -> 8.0552 [rad/s]

• MG90S servo motor - the velocity parameter is

CHAPTER 5. IMPLEMENTATION 65

4.8V -> 0.1 [sec/60°] -> 600 [degree/sec] ->

100 [RPM] -> 10.47 [rad/s]

6V -> 0.08 [sec/60°] -> 750 [degree/sec] ->

125 [RPM] -> 13.08 [rad/s]

• DS3225 digital servo motor - the velocity parameter is

4.8V -> 0.15 [sec/60°] -> 400 [degree/sec] ->

66.66 [RPM] -> 6.98 [rad/s]

6V -> 0.13 [sec/60°] -> 461.53 [degree/sec] ->

76.9216 [RPM] -> 8.0552 [rad/s]

A big problem of the URDF description is, that it does not allow closed

loop chains. The closed loop chain problem is that two different joints have

the same child link. In our case we have the gripper, which can behave this

way.

Figure 5.8: Closed loop chain

URDF does not support closed loop chain. For the future work we have

4 different ways to update it. The first choice is the pegasus gazebo plugins

CHAPTER 5. IMPLEMENTATION 66

package which was developed for this purpose, but if we choose this option

then we need to make the simulations in Gazebo instead of CoppeliaSim.

The second option is convert all URDF format to SDF format, because SDF

format allows the closed loop chains. The third option is to import the

gripper directly in CoppeliaSim and after that to solve the closed loop. At

the end, the easiest solution is to remove the inside links in the rhomboid

and the outside links need to be fixed. If we remove the inside links then

the model will not look like as the real robot and the gripper will not close

according to the parallel links.

5.2 Lilli in CoppeliaSim

We have the 3D model and the URDF description and we import the URDF

to the CoppeliaSim. See Figure 5.9.

Figure 5.9: Scene after the URDF import

On the right side there is the page which has one view and on the left

side the model definition with the robot manipulators. Our shapes are re-

spondable and dynamic and they have set the rotation, orientation and the

CHAPTER 5. IMPLEMENTATION 67

moment of inertia from the URDF. Our joints default setting is torque/force

mode which is needed to the simulation for the remote API control. When

we start the simulation at this point then the robot falls on the floor, but

we made sure that the right icons are showed next to the joints and shapes.

That means than we build the clean model right and they are dynamically

enabled. Preparing for the remote API control we must enable for each joint

the control loop in the joint dialog window.

5.2.1 JAVA Remote API

Remote API method allows the user to connect to CoppeliaSim with an ex-

ternal application. The remote API has two types: the b0-based remote

API and the legacy remote API. The application support is various for these

types, but we selected the legacy remote API and Java client to create the

connection. This version has less dependencies but is more difficult to extend.

We have 3 Java classes: Main.java, Initializer.java and LilliRemote.java. The

Main is simple, this is called the Initializer which initializes the whole con-

nection. It starts the server which returns a clientID that we are using during

the simulation control. After we are connected to the server we get objects

from the scene and handle the values. Our goal was to make movement via

this API and we move the joint right arm with the following code

System.out.println("Start arm moving");

String[] array = new String[]{"r_shoulder_y",

"r_shoulder_x", "r_arm_z", "r_elbow_y"};

int[] handles = new int[]{0,0,0,0};

IntW objH = new IntW(1);

for (int i = 0; i < array.length; i++) {

CHAPTER 5. IMPLEMENTATION 68

vrep.simxGetObjectHandle(clientID, array[i], objH,

vrep.simx_opmode_blocking);

handles[i] = objH.getValue();

}

System.out.println("Joint handles are: " +

Arrays.toString(handles));

float[] targetPositions = new float[]{(float)

(90*Math.PI/180), (float) (85*Math.PI/180), (float)

(90*Math.PI/180), (float) (45*Math.PI/180)};

float[] iniatialPositions = new float[]{(float)

(0*Math.PI/180), (float) (0*Math.PI/180), (float)

(0*Math.PI/180), (float) (0*Math.PI/180)};

for (int i = 0; i < handles.length; i++) {

FloatW jointTargetPos = new FloatW(targetPositions[i]);

vrep.simxSetJointTargetPosition(clientID, handles[i],

jointTargetPos, vrep.simx_opmode_oneshot_wait);

}

5.2.2 Arm movement via inverse kinematics

We would have liked to simulate how the right arm catches any object by

inverse kinematics. For this purpose we needed to set some setting to robot

model. At first, we allowed the inverse kinematics mode for the joints in the

kinematic chain. Next we defined two dummies, the first is the end-effector

which we added as a child to the last element in the kinematic chain which

CHAPTER 5. IMPLEMENTATION 69

is the right gear visual object. The second dummy we named as right arm

target, whose position and orientation are followed by the tooltip. After

these steps we linked these dummies to IK, tip-target link.

Figure 5.10: Linked tip-target pair

In the picture above, you can see the right linked dummies in the scene hi-

erarchy. To improve the right arm manipulation we moved the right_arm_target

and the tip to layer 11 to make dummies invisible. After that we created a

sphere calledmanipulationSphere, which we assigned as the right_arm_target

parent. The sphere was not dynamic and respondable. We moved the sphere

CHAPTER 5. IMPLEMENTATION 70

at the same position as the target has and at the simulation we can drag

the sphere instead of the target itself. We changed a few other details to

the sphere for a nicer appearance. At this state we have the kinematic chain

with an end-effector and the target and it looks like as

Figure 5.11: The scene with the sphere as the target object

When the scene was defined, then we set the IK groups and IK elements.

In the calculation modules dialog, we created an IK group. The IK group has

two types of calculation methods: Pseudo inverse and DLS (Damped least

squares) calculation method. The first method uses the linear approxima-

tion of the inverse kinematics problem, which is the Jacobian Pseudo-inverse

method. It is a widely used method in the field of robotics, but often has

instability near singularities. The second method is more stable and it is

finding the value of ∆Θ that minimises the quantity. Except the calculation

method we were able to manipulate with other parameters as maximum it-

eration, calculation weights etc. We selected the Pseudo inverse method and

set the maximum iterations to 6. Next we added an IK element for the group,

which is the tip. For the tip we checked all the constraints to follow the tar-

get position and orientation. In the last step, we ran the simulation and we

CHAPTER 5. IMPLEMENTATION 71

translated the sphere by the mouse to see the inverse kinematic solution for

the joints.

5.2.2.1 Solution to unstable model

With the settings above, the calculations will be fast, but the above Pseudo

inverse method becomes unstable when the target is out of reach or the kine-

matic chain is overconstrained etc. In this case we can use the second method

which is the DLS. When we selected the DLS method and after it ran the

simulation, then the model was more stable. To reach the most stable model

we would find the best damping factor and the maximum iterations count.

This solution has a big disadvantage, then the DLS method is much slower

than the Pseudo inverse. There exists the best solution for this problem. We

defined two IK groups. One of the groups calculates the results with Pseudo

inverse method and the second IK group calculates the results with the DLS

method. Both IK groups have the same IK element. For the IK groups with

the DLS method we gave condition to perform the method only when the

Pseudo inverse method fails. It is true, then we must found the best damping

factor and iterations for the DLS method. After that we ran the simulation

again and we tested whether the model is still unstable. When the sphere

was too far from the tooltip, the model stayed stable.

Chapter 6

Evaluation

In this chapter we evaluate the results of the diploma thesis. We start with

the 3D model, after that we show the URDF. At the end, you see warm-ups

of the model with the robot’s arm and leg.

6.1 3D model

The aim of this section will be create our real robot 3D model, which is used

in the simulator. The robot has 25 degree of freedom and has 26 links and

25 joints. The model was built by CAD systems AutoCAD and Solidworks.

The relations between the links and joints were defined by mates. For all

joint was defined a rotation axis according to which the joint rotates. We

successfully created the 3D model, which resembles to the real one. On the

Figure 6.1 you seen the 3D model which are used in simulations.

72

CHAPTER 6. EVALUATION 73

Figure 6.1: 3D model

6.2 URDF

The aim of this section will be to create a unified description format of the

robot. The selected description format was the URDF, which uses XML

format. The URDF contains the model definition and allows to import the

model for every simulators which support URDF files. The URDF describes

the links mass properties like rotational inertia, center of mass and mass.

Next it includes the visual mesh and the geometry mesh. On the other hand,

servomotors are described by the joint element and its properties like child,

parent, origin, axis, effort and velocity of the joint. In the below shown

code we see the left thigh and the left shin links and the knee revolute joint

CHAPTER 6. EVALUATION 74

connection.

<link

name="left_thigh">

<inertial>

<origin

xyz="-0.0044252 -0.088607 0.00011125"

rpy="0 0 0" />

<mass

value="0.051871" />

<inertia

ixx="0.00013801"

ixy="-2.0243E-05"

ixz="3.1231E-09"

iyy="3.3032E-05"

iyz="3.7526E-08"

izz="0.00015531" />

</inertial>

<visual>

<origin

xyz="0 0 0"

rpy="0 0 0" />

<geometry>

<mesh

filename="package://LillyHumanoid/meshes/left_thigh.STL" />

</geometry>

<material

name="">

<color

rgba="0.75294 0.75294 0.75294 1" />

CHAPTER 6. EVALUATION 75

</material>

</visual>

<collision>

<origin

xyz="0 0 0"

rpy="0 0 0" />

<geometry>

<mesh

filename="package://LillyHumanoid/meshes/left_thigh.STL" />

</geometry>

</collision>

</link>

<link

name="left_shin">

<inertial>

<origin

xyz="-0.015221 -0.059782 -0.00033796"

rpy="0 0 0" />

<mass

value="0.1032" />

<inertia

ixx="8.8877E-05"

ixy="1.4139E-07"

ixz="5.9253E-09"

iyy="2.4534E-05"

iyz="-1.0795E-06"

izz="9.4679E-05" />

</inertial>

<visual>

CHAPTER 6. EVALUATION 76

<origin

xyz="0 0 0"

rpy="0 0 0" />

<geometry>

<mesh

filename="package://LillyHumanoid/meshes/left_shin.STL" />

</geometry>

<material

name="">

<color

rgba="0.75294 0.75294 0.75294 1" />

</material>

</visual>

<collision>

<origin

xyz="0 0 0"

rpy="0 0 0" />

<geometry>

<mesh

filename="package://LillyHumanoid/meshes/left_shin.STL" />

</geometry>

</collision>

</link>

<joint

name="l_knee_x"

type="revolute">

<origin

xyz="0 -0.17729 9.8422E-05"

rpy="-1.5467E-05 0.0057687 0" />

CHAPTER 6. EVALUATION 77

<parent

link="left_thigh" />

<child

link="left_shin" />

<axis

xyz="1 0 0" />

<limit

lower="-0.0610865238198"

upper="2.33874119767"

effort="2.4"

velocity="8" />

</joint>

6.3 Warmp-up with leg

The aim of this section will be to test the robot model with a simple move-

ment. This example shows the leg movement. We used the remote API

aspect of the robot controlling. We laid down the model on the floor. Then

we initialized the connection between the Java client and the CoppeliaSim

simulator. With the simxGetObjectHandle remote API function we saved

all the joint handles that we needed. Next we defined the target positions

of the joints and after that we called the simxSetJointTargetPosition which

moved the joint to the position, which we sent as a parameter. Because the

joint is revolute we had to send the angle in radians. The below shown code

represents the warm-up of the leg.

System.out.println("Start left leg moving");

String[] array = new String[]{"l_hip_y", "l_knee_y", "l_ankle_y"};

CHAPTER 6. EVALUATION 78

int[] handles = new int[]{0,0,0};

IntW objHandle = new IntW(1);

for (int i = 0; i < array.length; i++) {

vrep.simxGetObjectHandle(clientID, array[i], objHandle,

vrep.simx_opmode_blocking);

handles[i] = objHandle.getValue();

}

System.out.println("Joint handles are: " +

Arrays.toString(handles));

float[] targetPositions = new float[]{(float) (-75*Math.PI/180),

(float) (-45*Math.PI/180), (float) (30*Math.PI/180)};

for (int i = 0; i < handles.length; i++) {

System.out.println("move");

FloatW jointTargetPos = new FloatW(targetPositions[i]);

vrep.simxSetJointTargetPosition(clientID, handles[i],

jointTargetPos, vrep.simx_opmode_oneshot_wait);

}

vrep.simxFinish(clientID);

6.4 Warmp-up with arm

The aim of this section will be to test the robot model arm movement. In

this example we used the remote API and Java client too. First we initialized

CHAPTER 6. EVALUATION 79

the connection. After it, we saved the joint handles for the joints. Next we

defined the targetPositions array to save the target values in radians. Before

the simulation we had to check that the joint is in torque/force mode, the

motor is enabled and the control loop is enabled too. If the joint will be

moved too fast while the simulation then you can set the upper velocity

limit. At the end, we call the simxSetJointTargetPosition to move the joints.

The below shown code represents the warmp-up of the leg.

System.out.println("Start arm moving");

String[] array = new String[]{"r_shoulder_y", "r_shoulder_x",

"r_arm_z", "r_elbow_y"};

int[] handles = new int[]{0,0,0,0};

IntW objH = new IntW(1);

for (int i = 0; i < array.length; i++) {

vrep.simxGetObjectHandle(clientID, array[i], objH,

vrep.simx_opmode_blocking);

handles[i] = objH.getValue();

}

System.out.println("Joint handles are: " +

Arrays.toString(handles));

float[] targetPositions = new float[]{(float) (90*Math.PI/180),

(float) (85*Math.PI/180), (float) (90*Math.PI/180), (float)

(45*Math.PI/180)};

float[] iniatialPositions = new float[]{(float) (0*Math.PI/180),

(float) (0*Math.PI/180), (float) (0*Math.PI/180), (float)

(0*Math.PI/180)};

CHAPTER 6. EVALUATION 80

for (int i = 0; i < handles.length; i++) {

FloatW jointTargetPos = new FloatW(targetPositions[i]);

initialPosition.getValue());

vrep.simxSetJointTargetPosition(clientID, handles[i],

jointTargetPos, vrep.simx_opmode_oneshot_wait);

}

sleep(5000);

for (int j = 0; j < handles.length; j++) {

FloatW jointInitialPosition = new FloatW(iniatialPositions[j]);

initialPosition.getValue());

vrep.simxSetJointTargetPosition(clientID, handles[j],

jointInitialPosition, vrep.simx_opmode_oneshot_wait);

}

vrep.simxFinish(clientID);

Chapter 7

Conclusion

The aims of the diploma thesis were creation of the 3D model for simulation

purpose and testing of the algorithms in simulations and after that on the

real robot. Next we need to explore and implement algorithms by which the

robot will be able to move in its environment, including inverse kinematics

and the use of machine learning algorithms.

We started with a wide research of humanoid robots as well as a history

overview, how to model the shapes, the joint types, degree of freedom of

the robot, the mass properties and the forward and inverse kinematics prob-

lems. In the first part of the proposal chapter we discussed how to build the

clean model for the simulation purpose and which unified structure to use

for it. This section was successfully implemented and this was described in

the implementation. In the second part of a proposal we described the Cop-

peliaSim simulator scene, model definition, simulation control via embedded

scripts or remote API and after that we explained how inverse kinematics

solver works with kinematic chains. We have successfully created an example

of a simple robot arm movement via remote API and Java client. Moreover,

we created one kinematic chain defining the right arm and we simulated an

81

CHAPTER 7. CONCLUSION 82

object catching with the arm.

Implementation and algorithm for the robot movement is difficult. In the

future, we can extend our capabilities of robot motion path creation and test

it on a real robot. Important thing will be to solve the closed loop chain

problem which we mentioned at the implementation chapter.

Bibliography

[AL09] Andreas Aristidou and Joan Lasenby. Inverse kinematics: a

review of existing techniques and introduction of a new fast

iterative solver, 09 2009.

[BBM+02] Rodney Brooks, Cynthia Breazeal, Matthew Marjanovic,

Brian Scassellati, and Matthew M. Williamson. The cog

project: Building a humanoid robot. Lecture Notes in Ar-

tificial Intelligence, 1562, 03 2002.

[Beh08] Sven Behnke. Humanoid robots - from fiction to reality? KI,

22:5–9, 01 2008.

[BM18] L.V. Bharath and Himanth M. Forward kinematics analysis

of robot manipulator using different screw operators. Interna-

tional Journal of Robotics and Automation, 3, 03 2018.

[Bor16] Havrila Boris. Simulácia humanoidného robota. 2016.

[Copa] CoppeliaSim. Building a clean model tutorial.

[Copb] CoppeliaSim. Joint types.

[dLGCZM04] Javier de Lope, Rafaela González-Careaga, Telmo Zarraonan-

dia, and Darío Maravall. Inverse kinematics for humanoid

83

BIBLIOGRAPHY 84

robots using artificial neural networks. volume 2809, pages

448–459, 04 2004.

[Don] Bruce Randall Donald. Forward kinematics: The denavit-

hartenberg convention.

[Edw] Lin Edwards. Armar-iii, the robot that learns via touch.

[KB06] Serdar Kucuk and Z. Bingul. Robot Kinematics: Forward and

Inverse Kinematics. 12 2006.

[PGPW18] Lenka Pitonakova, Manuel Giuliani, Anthony Pipe, and Alan

Winfield. Feature and performance comparison of the v-rep,

gazebo and argos robot simulators. 02 2018.

[RPFS13] Robert B. Leighton Richard P. Feynman and Matthew Sands.

The Feynman Lectures on Physics, volume I. 1963-1965, 2006,

2013.

[SG] Robert Haschke Stuart Glaser, William Woodall. Xacro file

format.

[SRR11] Nima Shafii, Luís Reis, and Rosaldo Rossetti. Two humanoid

simulators: Comparison and synthesis. pages 1 – 6, 07 2011.

[SZK17] Roman Szewczyk, Cezary Zielinski, and Malgorzata Kaliczyn-

ska. Automation 2017: Innovations in Automation, Robotics

and Measurement Techniques, volume 550. 01 2017.

[TPS17] Dr.Sweet Chandan Tarun Pratap Singh, Dr.P.Suresh. Forward

and inverse kinematic analysis of robotic manipulators. vol-

ume 04, pages 1459–1469, 02 2017.

BIBLIOGRAPHY 85

[TS00] G. Tevatia and S. Schaal. Inverse kinematics for humanoid

robots. In Proceedings 2000 ICRA. Millennium Conference.

IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No.00CH37065), volume 1, pages

294–299 vol.1, April 2000.

Attachment

All files are available on github: https://github.com/Robotics-DAI-FMFI-UK/

cu-lIllI. The folder name is lilli_LTS.

SD card - AutoCAD files, SOLIDWORKS PART and ASSEMBLY files,

3D model, URDF, STL meshes, CoppeliaSim .ttm file, java files for remote

API client, README

86

https://github.com/Robotics-DAI-FMFI-UK/cu-lIllI
https://github.com/Robotics-DAI-FMFI-UK/cu-lIllI

	Introduction
	Motivation
	Research
	Humanoid robots
	History and overview
	Robot shapes
	Terms characteristic

	Humanoid robot model and simulators
	Degree of Freedom
	Modelling software
	Robot description formats

	Robot simulators and comparison
	V-REP simulator
	Gazebo robot simulator
	ARGoS robot simulator

	Mass properties
	Center of Mass
	Moment of inertia

	Kinematics
	Forward kinematics
	Inverse kinematics
	Geometric solution
	Algebraic solution

	Design of robot Lilli model
	Clean model
	Shapes
	Joints
	Dynamic shapes
	Model definition
	URDF

	The simulator
	Scenes
	Scripts and Remote API
	Calculation Modules
	Inverse kinematics
	IK groups and IK elements
	Solving IK and FK

	Implementation
	Building the clean model
	AutoCAD and 2D parts
	Problem of inertia and utilization of Solidworks
	3D model
	Lilli's description and closed loop chain problem

	Lilli in CoppeliaSim
	JAVA Remote API
	Arm movement via inverse kinematics
	Solution to unstable model

	Evaluation
	3D model
	URDF
	Warmp-up with leg
	Warmp-up with arm

	Conclusion

