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Abstract. We are aiming at a semantics of logic programs with preferences defined on rules, which
always selects a preferred answer set, if there is a non-empty set of (standard) answer sets of the given
program.
It is shown in a seminal paper by Brewka and Eiter that the goal mentioned above is incompatible with
their second principle and it is not satisfied in their semantics of prioritized logic programs. Similarly,
also according to other established semantics, based on a prescriptive approach, there are programs
with standard answer sets, but without preferred answer sets.
According to the standard prescriptive approach no rule can be fired before a more preferred rule,
unless the more preferred rule is blocked. This is a rather imperative approach, in its spirit.
In our approach, rules can be blocked by more preferred rules, but the rules which are not blocked are
handled in a more declarative style, their execution does not depend on the given preference relation
on the rules.
An argumentation framework (different from the Dung’s framework) is proposed in this paper. Argu-
mentation structures are derived from the rules of a given program. An attack relation on argumentation
structures is defined, which is derived from attacks of more preferred rules against the less preferred
rules. Preferred answer sets correspond to complete argumentation structures, which are not blocked
by other complete argumentation structures.

Keywords: extended logic program, answer set, preference, preferred answer set, argumentation struc-
ture

1 Introduction

The meaning of a nonmonotonic theory is often characterized by a set of (alternative) belief sets. It is
appropriate to select sometimes some of the belief sets as more preferred.

We are focused in this paper on extended logic programs with a preference relation on rules, see, e.g.,
[1, 3, 9, 15]. Such programs are denoted by the term prioritized logic programs in this paper.

It is suitable to require that some preferred answer sets can be selected from a non-empty set of standard
answer sets of a (prioritized) logic program.

Unfortunately, there are prioritized logic programs with standard answer sets, but without preferred
answer sets according to the semantics of [1] and also of [3] or [15]. This feature is a consequence of the
prescriptive approach to preference handling [4]. According to that approach no rule can be fired before a
more preferred rule, unless the more preferred rule is blocked. This is a rather imperative approach, in its
spirit.

An investigation of basic principles which should be satisfied by any system containing a preference
relation on defeasible rules is of fundamental importance. This type of research has been initialized in the
seminal paper [1]. Two basic principles are accepted in the paper.

The second of the principles is violated, if a function is assumed, which always selects a non-empty
subset of preferred answer sets from a non-empty set of all standard answer sets of a prioritized logic
program.

We believe that the possibility to select always a preferred answer set from a non-empty set of standard
answer sets is of critical importance. This goal requires to accept a descriptive approach to preference
handling. The approach is characterized in [5, 4] as follows: The order in which rules are applied, reflects
their “desirability” – it is desirable to apply the most preferred rules.

In our approach, rules can be blocked by more preferred rules, but the rules which are not blocked are
handled in a more declarative style. If we express this in terms of desirability, it is desirable to apply all



(applicable) rules, which are not blocked by a more preferred rule. The execution of non-blocked rules does
not depend on their order. Dependencies of more preferred rules on less preferred rules do not prevent the
execution of non-blocked rules.

Our goal is:

– to modify the Principles proposed by [1] in such a way that they do not contradict a selection of a
non-empty set of preferred answer sets from the underlying non-empty set of standard answer sets,

– to introduce a notion of preferred answer sets that satisfies the above mentioned modification.

The proposed method is inspired by [7]. While there defeasible rules are treated as (defeasible) argu-
ments, here (defeasible) assumptions, sets of default negations, are considered as arguments. Reasoning
about preferences in a logic program is here understood as a kind of argumentation. Sets of default literals
can be viewed as defeasible arguments, which may be contradicted by consequences of some applicable
rules. The preference relation on rules is used in order to ignore the attacks of less preferred arguments
against more preferred arguments. The core problem is to transfer the preference relation defined on rules
to argumentation structures and, consequently, to answer sets.1

The basic argumentation structures correspond to the rules of a given program. Derivation rules, which
enable derivation of argumentation structures from the basic ones are defined. That derivation leads from
the basic argumentation structures (corresponding to the rules of a given program) to argumentation struc-
tures corresponding to the rules of an negative equivalent of the given program introduced in [6].

Attacks of more preferred rules against the less preferred rules are transferred via another set of deriva-
tion rules to the attacks between argumentation structures. Preferred answer sets are defined over that
background. They correspond to complete and non-blocked (warranted) argumentation structures.

The contributions of this paper are summarized as follows. A modified set of principles for preferred
answer set specification is proposed. A new type of argumentation framework is constructed, which enables
a selection of preferred answer sets. There are basic arguments (argumentation structures) and attacks in the
framework and also derived arguments and attacks. Rules for derivation of argumentation structures and
rules for derivation of attacks of some argumentation structures against other argumentation structures are
defined. Preferred answer sets are defined in terms of complete and non-blocked (warranted) argumentation
structures. Finally, we emphasize that each program with a non-empty set of answer sets has a preferred
answer set.

A preliminary version of the presented research has been published in [11]. The main differences be-
tween the preliminary and the current version are summarized in the Conclusions.2 An extended version of
this paper with proofs is accessible as [12].

2 Preliminaries

The language of extended logic programs is used in this paper.
Let At be a set of atoms. The set of objective literals is defined as Obj = At ∪ {¬ A : A ∈ At}. If

L is an objective literal then the expression of the form not L is called default literal. Notation: Def =
{not L | L ∈ Obj}. The set of literals Lit is defined as Obj ∪Def .

A convention: ¬¬A = A, where A ∈ At . If X is a set of objective literals, then not X = {not L |
L ∈ X}.

A rule is each expression of the form L ← L1, . . . , Lk, where k ≥ 0, L ∈ Obj and Li ∈ Lit . If r is
a rule of the form as above, then L is denoted by head(r) and {L1, . . . , Lk} by body(r). If R is a set of
rules, then head(R) = {head(r) | r ∈ R} and body(R) = {body(r) | r ∈ R}. A finite set of rules is
called extended logic program (program hereafter).

1 Our intuitions connected to the notion of argumentation structure and also the used constructions are different from
Dung’s arguments or from arguments of [7, 2]. On the other hand, we plan an elaboration of presented constructions
aiming at a theory, which generalizes Dung’s abstract argumentation framework, TMS, constructions given, e.g., by
[7] or [2]. Anyway, this paper does not present a contribution to argumentation theory.

2 They are described in technical terms, assuming a familiarity with this paper. Most importantly, the notion of pre-
ferred answer set is changed in this paper.



The set of conflicting literals is defined as CON = {(L1, L2) | L1 = not L2 ∨ L1 = ¬L2}. A set
of literals S is consistent if (S × S) ∩ CON = ∅. An interpretation is a consistent set of literals. A total
interpretation is an interpretation I such that for each objective literal L either L ∈ I or not L ∈ I . A
literal L is satisfied in an interpretation I iff L ∈ I (notation: I |= L). A set of literals S is satisfied in I iff
S ⊆ I (notation: I |= S). A rule r is satisfied in I iff I |= head(r) whenever I |= body(r).

If S is a set of literals, then we denote S ∩ Obj by S+ and S ∩ Def by S−. Symbols (body(r))−

and (body(r))+ are used here in that sense (notice that the usual meaning of body−(r) is different). If
X ⊆ Def then pos(X) = {L ∈ Obj | not L ∈ X}. Hence, not pos((body(r))−) = (body(r))−. If r is a
rule, then the rule head(r)← (body(r))+ is denoted by r+.

An answer set of a program can be defined as follows (only consistent answer sets are defined).
A total interpretation S is an answer set of a program P iff S+ is the least model3 of the program

P+ = {r+ | S |= (body(r))−}. Note that an answer set S is usually represented by S+ (this convention
is sometimes used also in this paper).

The set of all answer sets of a program P is denoted by AS (P ). A program is called coherent iff it has
an answer set.

Strict partial order is a binary relation, which is irreflexive, transitive and, consequently, asymmetric.
A prioritized logic program is usually defined as a triple (P,≺,N ), where P is a program, ≺ a strict

partial order on rules of P and a function N assigns names to rules of P . If r1 ≺ r2 it is said that r2 is
more preferred than r1.

We will not use N . If a symbol r is used in this paper in order to denote a rule, then r is considered as
the name of that rule (no different name N (r) is introduced).

3 Argumentation Structures

Our aim is to transfer a preference relation defined on rules to a preference relation on answer sets and,
finally, to a notion of preferred answer sets. To that end argumentation structures are introduced. The basic
argumentation structures correspond to rules. Some more general types of argumentation structures are
derived from the basic argumentation structures. A special type of argumentation structures corresponds to
answer sets.

Definition 1 (�P , [10]) An objective literal L depends on a set of default literals W ⊆ Def with respect
to a program P (L�P W 4) iff there is a sequence of rules 〈r1, . . . , rk〉, k ≥ 1, ri ∈ P such that

– head(rk) = L,
– W |= body(r1),
– for each i, 1 ≤ i < k, W ∪ {head(r1), . . . , head(ri)} |= body(ri+1).

The set {L ∈ Lit | L�P W} ∪W is denoted by Cn�P
(W ).

W ⊆ Def is self-consistent w.r.t. a program P iff Cn�P
(W ) is consistent. 2

If Z ⊆ Obj , we will use sometimes the notation Cn�P∪Z
(W ), assuming that the program P is ex-

tended by the set of facts Z.

Definition 2 (Dependency structure) Let P be a program.
A self-consistent set X ⊆ Def is called an argument w.r.t. the program P for a consistent set of

objective literals Y , given a set of objective literals Z iff

1. pos(X) ∩ Z = ∅,
2. Y ⊆ Cn�P∪Z

(X).

We will use the notation 〈Y ←↩ X;Z〉 and the triple denoted by it is called a dependency structure (w.r.t.
P ). 2

3 P+ is treated as definite logic program, i.e., each objective literal of the form ¬A, where A ∈ At , is considered as
a new atom.

4 L�P W could be defined as Tω
P (W ) and Cn�P (W ) as Tω

P (W )



If Z = ∅ also a shortened notation 〈Y ←↩ X〉 can be used. We will omit sometimes the phrase “w.r.t.
P ” and speak simply about dependency structures and arguments, if the corresponding program is clear
from the context.

Basic argumentation structures comply with Definition 2 of dependency structures, if some conditions
are satisfied:

Definition 3 (Basic argumentation structure) Let r ∈ P be a rule such that

– (body(r))− is self-consistent and
– pos((body(r))−) ∩ (body(r))+ = ∅.

Then A = 〈{head(r)} ←↩ (body(r))−; (body(r))+〉 is called a basic argumentation structure. 2

Proposition 4 Each basic argumentation structure is a dependency structure. 2

We emphasize that only self-consistent arguments for consistent sets of objective literals are considered
in this paper. Hence, programs as P = {p← not p} or Q = {p← not q;¬p← not q} are irrelevant for
our constructions.

Some dependency structures can be derived from the basic argumentation structures. Only the depen-
dency structures derived from the basic argumentation structures using derivation rules from Definition
5 are of interest in the rest of this paper, we will use the term argumentation structure for dependency
structures derived from basic argumentation structures using derivation rules.

Derivation rules are motivated in Example 6.

Definition 5 (Derivation rules and argumentation structures) Each basic argumentation structure is an
argumentation structure. Let P be a program.

R1 Let r1, r2 ∈ P ,A1 = 〈{head(r1)} ←↩ X1;Z1〉 andA2 = 〈{head(r2)} ←↩ (body(r2 ))−; (body(r2 ))+〉
be argumentation structures, head(r2) ∈ Z1, X1 ∪ (body(r2 ))− ∪Z1 ∪ (body(r2 ))+ ∪{head(r1)} be
consistent and X1 ∪ (body(r2 ))

− be self-consistent.
Then also A3 = 〈head(r1)←↩ X1 ∪ (body(r2 ))−; (Z1 \ {head(r2)})∪ (body(r2 ))+〉 is an argumen-
tation structure. We also write A3 = u(A1,A2). We define u as a symmetric relation: u(A1,A2) =
u(A2,A1)

5

R2 Let A1 = 〈Y1 ←↩ X1〉 and A2 = 〈Y2 ←↩ X2〉 be argumentation structures and X1 ∪X2 ∪ Y1 ∪ Y2 be
consistent and X1 ∪X2 be self-consistent.
Then also A3 = 〈Y1 ∪ Y2 ←↩ X1 ∪X2〉 is an argumentation structure. We also write A3 = A1 ∪ A2.

R3 Let A1 = 〈Y1 ←↩ X1〉 be an argumentation structure and W ⊆ Def .
If X1 ∪W ∪ Y1 is consistent and X1 ∪W is self-consistent, then also A2 = 〈Y1 ←↩ X1 ∪W 〉 is an
argumentation structure. We also write A2 = A1 ∪W .2

Example 6 ([1]) Let a program P be given (P is used as a running example in this paper):
r1 b← a,not ¬b
r2 ¬b← not b
r3 a← not ¬a.

Suppose that ≺= {(r2, r1)}.
Consider the rule r2. The default negation not b plays the role of a defeasible argument. If the argument

can be consistently evaluated as true with respect to a program containing r2, then also ¬b can (and must)
be evaluated as true.

As regards the rule r1, default negation not ¬b can be treated as an argument for b, if a is true, it is an
example of a “conditional argument”.

The following basic argumentation structures correspond to the rules of P :
〈{b} ←↩ {not ¬b}; {a}〉,〈{¬b} ←↩ {not b}〉, 〈{a} ←↩ {not ¬a}〉. Let us denote them by A1,A2,A3,
respectively.

5 Symmetry of u enables below a more succinct formulation of derivation rules Q1, Q2. The symbol u indicates that
A3 is a result of an unfolding.



Some arguments can be treated as counterarguments against other arguments. If we accept the argument
not b (with the consequence ¬b), it can be treated as a counterargument to not ¬b and, similarly, not ¬b
(with the consequence b, if a is true) as a counterargument against not b. On the level of argumentation
structures it can be said that A1 contradicts A2 and vice versa.

The preference relation can be directly transferred to basic argumentation structures, henceA1 is more
preferred than A2. Consequently, only the attack of A1 against A2 is relevant.

An example of a derived argumentation structure: A3 enables to “unfold” the condition a in A1, the
resulting argumentation structure can be expressed as A4 = 〈{b} ←↩ {not ¬b,not ¬a}〉. Similarly,
A5 = 〈{a, b} ←↩ {not ¬b,not ¬a}〉 can be derived from A3 and A4, A5 = A3 ∪ A4.

We will also transfer the attack relation from the basic argumentation structures to the derived argu-
mentation structures.

Observe that some argumentation structures correspond to answer sets. A5 corresponds to the answer
set {a, b} and A6 = 〈{a,¬b} ←↩ {not b,not ¬a}〉 to {a,¬b}. Notice that A6 = A2 ∪ A3. The attack
relation enables to select the preferred answer set. This will be discussed later in Example 19. 2

Proposition 7 Each argumentation structure is a dependency structure.

Proof. We have to show that an application of R1, R2 and R3 preserves properties of dependency structures.

R1 Since S1 = X1∪(body(r2 ))−∪Z1∪(body(r2 ))+∪{head(r1)} is consistent S2 = X1∪(body(r2 ))−∪
(Z1 \ {head(r2)}) ∪ (body(r2 ))+ ⊆ S1 is also consistent. It means pos(X1 ∪ (body(r2 ))−) ∩ ((Z1 \
{head(r2)}) ∪ (body(r2 ))

+) = ∅.
Let Q = P ∪ (Z1 \ {head(r2)}) ∪ (body(r2 ))

+ and w = head(r2)←.
From head(r2) ∈ Cn�P∪(body(r2 ))+

((body(r2 ))
−) we have sequence of rules R2 = 〈q1, q2, . . . , qm〉

where m > 0 and qm = r2.
From head(r1) ∈ Cn�P∪Z1

(X1) we have sequence of rules R1 = 〈p1, p2, . . . , pn〉 where n > 0 and
pn = r1. We assume there is at most one occurrence of w in R1. Otherwise we can remove all but
leftmost one. Note that since r2 ∈ P there is a possibility to satisfy body(r1) in a different way than
using w.
If w ∈ R1 then we have pi = w for some 1 ≤ i < n. We construct sequence
R3 = 〈q1, q2, . . . , qm, p1, p2, . . . , pi−1, pi+1, . . . , pn〉. If w 6∈ R1 we construct sequence
R3 = 〈q1, q2, . . . , qm, p1, p2, . . . , pn〉. In both cases R3 satisfy conditions from definition 1 for as-
sumption X1 ∪ (body(r2 ))

−.
Since rules in R3 are from program Q we have head(r1) ∈ Cn�Q

(X1 ∪ (body(r2 ))
−).

R3 Z2 = ∅ hence pos(X1 ∪W ) ∩ Z2 = ∅. We have Y1 ⊆ Cn�P
(X1). So for every y ∈ Y1 there is a

sequence R of rules that satisfy Definition 1 for assumption X1. Same sequence satisfy definition 1 for
superset assumption X1 ∪W . Hence y ∈ Cn�P

(X1 ∪W ) and Y1 ⊆ Cn�P
(X1 ∪W ).

R2 Z3 = ∅ hence pos(X1∪X2)∩Z3 = ∅. We have Y1 ⊆ Cn�P
(X1) hence Y1 ⊆ Cn�P

(X1∪X2). We
also have Y2 ⊆ Cn�P

(X2) hence Y2 ⊆ Cn�P
(X1 ∪X2). Therefore Y1 ∪ Y2 ⊆ Cn�P

(X1 ∪X2).

A derivation of an argumentation structure A (w.r.t. P ) is a sequence 〈A1,A2, . . . ,Ak〉 of argumenta-
tion structures (w.r.t. P ) such that A1 is a basic argumentation structure, A = Ak and each Ai, 1 < i ≤ k,
is either a basic argumentation structure or it is obtained by R1 or R2 or R3 from preceding argumentation
structures.

4 Attacks

Our approach to preferred answer sets is based on a solution of conflicts between argumentation structures.
We distinguish three steps towards that goal. Contradictions between argumentation structures represent
the elementary step. Rule preference and contradiction between basic argumentation structures are used to
form an attack relation. Consider two basic argumentation structures A1 and A2. If A1 contradicts A2 and
corresponds to a more preferred rule, then it attacks A2. Attacks are propagated to other argumentation
structures using derivation rules. Attacks between argumentation structures depend on how argumentation
structures are derived. Hence, we need a more context-independent notion and we define a relation of block-
ing between argumentation structures. The complement of blocking (warranting) is used in the definition
of preferred argumentation structures.



Definition 8 Consider argumentation structures A = 〈Y1 ←↩ X1;Z1〉 and B = 〈Y2 ←↩ X2;Z2〉.
If there is a literal L ∈ Y1 such that not L ∈ X2, it is said that the argument X1 contradicts the

argument X2 and the argumentation structure A contradicts the argumentation structure B.
It is said that X1 is a counterargument to X2. 2

The basic argumentation structures corresponding to the facts of the given program are not contradicted.
Let r1 = a ← be a fact and not a ∈ (body(r2 ))

−. Then any W ⊆ Def s.t. (body(r2 ))− ⊆ W is not
self-consistent and, therefore, it is not an argument.

Example 9 In Example 6, A1 contradicts A2 and A2 contradicts A1.
Only some counterarguments are interesting: the rule r1 is more preferred than the rule r2, therefore

the counterargument of A2 against A1 should not be “effectual”. We are going to introduce a notion of
attack in order to denote “effectual” counterarguments. 2

Similarly as for the case of argumentation structures, the basic attacks are defined first. A terminological
convention: if A1 attacks A2, it is said that the pair (A1,A2) is an attack.

Definition 10 Let r2 ≺ r1 and let A1 = 〈{head(r1)} ←↩ (body(r1 ))−; (body(r1 ))+〉 contradicts A2 =
〈{head(r2)} ←↩ (body(r2 ))−; (body(r2 ))+〉.

Then A1 attacks A2 and it is said that this attack is basic. 2

Attacks between argumentation structures “inherited” (propagated) from basic attacks are defined in
terms of derivation rules. The rules of that inheritance are motivated and defined below.

Example 11 Let us continue with Example 6.
Consider the basic argumentation structuresA1 = 〈{b} ←↩ {not ¬b}; {a}〉,A2 = 〈{¬b} ←↩ {not b}〉,

A3 = 〈{a} ←↩ {not ¬a}〉 and the derived argumentation structures A4 = 〈{b} ←↩ {not ¬b,not ¬a}〉,
A5 = 〈{b, a} ←↩ {not ¬b,not ¬a}〉, A6 = 〈{¬b, a} ←↩ {not b,not ¬a}〉.

(A1,A2) is the only basic attack (the more preferred A1 attacks the less preferred A2).
Derivations of the attacks of (A4,A2) and (A5,A2) could be motivated as follows.A4 is derived from

A1 and A3 using R1, the attack of A1 against A2 should be propagated to the attack (A4,A2). Note that
A3 is not attacked.

Now, A5 is derived from A3 and A4. Again, the attack of A4 against A2 should be inherited by
(A5,A2).

Similarly, A6 is derived from attacked A2. The attacks against A2 are transferred to the attacks against
A6. The attack (A5,A6) is a crucial one, a selection of preferred answer set is based on it; compare with
Example 19.

On the contrary, A2 contradicts A4 and A5, but it is based on a less preferred rule, hence those contra-
dictions are not considered as attacks. 2

First we define two rules, Q1 and Q2, which specify inheritance of attacks “via unfolding” - use of the
rule R1. Second, two rules Q3 and Q4 derive attacks when the attacking or attacked side is joined with
another argumentation structure - use of the rule R2. Finally, rules Q5 and Q6 derive attacks, if attacking
or attacked side is extended by an assumption - use of the rule R3. Some asymmetries between pairs Q1,
Q2 and Q3, Q4 will be discussed below, see Example 22.

Definition 12 (Attack derivation rules) Basic attacks are attacks.

Q1 Let A1,A2,A3 be argumentation structures such that:
– A1 attacks A2,
– A3 does not attack A1, and
– u(A2,A3) is argumentation structure.

Then A1 attacks u(A2,A3).
Q2 Let A1,A2,A3 be argumentation structures such that:

– A1 attacks A2,
– A3 is not attacked, and



– u(A1,A3) is argumentation structure.
Then u(A1,A3) attacks A2.

Q3 Let A1 and A3 be argumentation structures of the form 〈X ←↩ Y 〉 and A2 be an argumentation
structure. Suppose that:

– A1 attacks A2,
– A3 is not attacked and
– A1 ∪ A3 is argumentation structure.

Then A1 ∪ A3 attacks A2.
Q4 Let A1 be an argumentation structure and A2, A3 be argumentation structures of the form 〈X ←↩ Y 〉

such that:
– A1 attacks A2,
– A3 does not attack A1, and
– A2 ∪ A3 is argumentation structure.

Then A1 attacks A2 ∪ A3.
Q5 Let A1 = 〈X ←↩ Y 〉 and A2 be argumentation structures. Let W ⊆ Def . Suppose that:

– A1 attacks A2, and
– A1 ∪W = 〈X ←↩ Y ∪W 〉 is argumentation structure.

Then A1 ∪W attacks A2.
Q6 Let A1 and A2 = 〈X ←↩ Y 〉 be argumentation structures. Let W ⊆ Def . Suppose that:

– A1 attacks A2, and
– 〈X ←↩ Y ∪W 〉 = A2 ∪W is argumentation structure.

Then A1 attacks A2 ∪W .

There are no other attacks except those specified above. 2

Definition 13 A derivation of an attack X is a sequence X1, . . . ,Xk, where X = Xk, each Xi is an attack
(a pair of attacking and attacked argumentation structures), X1 is a basic attack and each Xi, 1 < i ≤ k is
either a basic attack or it is derived from the previous attacks using rules Q1, Q2, Q3, Q4, Q5, Q6.

Derivations of argumentation structures and of attacks blend together. Example 15 shows that a pair of
argumentation structures (B,A) is an attack w.r.t. a derivation, but it is not an attack w.r.t another derivation.
Let us start with a definition.

Definition 14 Let a program P and an answer set S be given. Let be R = {r ∈ P | body(r) ⊆ S}. It is
said that R is the set of all generating rules of S+. 2

Example 15 Let P be
r1 a← not b
r2 b← not a
r3 a← not c
r4 c← b.

≺= {(r1, r2)}.
There are two answer sets of P : S1 = {a} and S2 = {b, c}. The corresponding argumentation struc-

tures are A = 〈{a} ←↩ {not b,not c}〉 and B = 〈{b, c} ←↩ {not a}〉, respectively.
There are two derivations of A. Both derivations start from a basic argumentation structure and R3

is used. The first is the sequence A1,A and the second is A3,A, where A1 = 〈{a} ←↩ {not b}〉 and
A3 = 〈{a} ←↩ {not c}〉.

If the sequence A1,A is considered, an attack against A is derivable. Let be A2 = 〈{b} ←↩ {not a}〉,
A4 = 〈{c} ←↩ ∅; {b}}〉. The corresponding attack derivation is as follows:
(A2,A1), (u(A4,A2),A1), (B,A1), (B,A), where Q2, Q3 and Q6 are used.

The only basic attack of our example is (A2,A1). Hence, the second derivation A3,A of A cannot be
attacked.

The derivations of A correspond to two sets of rules generating S1, i.e., R1 = {r1}, and R2 = {r3}.
R1 contains an attacked rule, while R2 does not contain such a rule. We accept that if there is a set of rules
generating an answer set S s.t. no rule is attacked by a rule generating another answer set, then we can
consider S as a preferred one.

We transfer this rather credulous approach to derivations of preferred argumentation structures. 2



Definition 16 (Complete arguments) An argumentation structure 〈Y ←↩ X〉 is called complete iff for
each literal L ∈ Obj it holds that L ∈ Y or not L ∈ X . 2

Definition 17 (Warranted and blocked derivations) Let σ = A1, . . . ,Ak be a derivation of an argumen-
tation structure A, where A = Ak.

It is said that σ is blocked iff there is a derivation τ of the attack (B,A), where B is a complete
argumentation structure and each member of τ contains an Ai as a second component.

A derivation is warranted if it is not blocked. 2

Definition 18 (Warranted and blocked argumentation structures) An argumentation structureA is war-
ranted iff there is a warranted derivation of A.
A is blocked iff each derivation of A is blocked. 2

5 Preferred answer sets

Example 19 Consider our running example, where we have complete argumentation structures A5 =
〈{b, a} ←↩ {not ¬b,not ¬a}〉,A6 = 〈{¬b, a} ←↩ {not ¬a,not b}〉.

We will prefer A5 over A6. A6 is blocked by A5. On the other hand, A5 is not blocked.
Consequently, we will consider {a, b} as a preferred answer set of the given prioritized logic program.

2

Definition 20 (Preferred answer set) An argumentation structure is preferred iff it is complete and war-
ranted.

Y ∪X is a preferred answer set iff 〈Y ←↩ X〉 is a preferred argumentation structure. 2

Notice that our notion of preferred answer set is rather a credulous one, it is based on the notion of
warranted derivation, i.e., at least one derivation of a preferred answer set should not be blocked.

The following example shows that the argumentation structure corresponding to the only answer set of
a program is preferred, even if it is attacked (by an argumentation structure which is not complete).

Example 21

r1 b← not a

r2 a← not b

r3 c← a

r4 c← not c

≺= {(r1, r2), (r3, r4)}.
Let the basic argumentation structures be denoted byAi, i = 1, . . . , 4. (A1,A2), (A3,A4) are the basic

attacks. A1 attacks A5 = 〈{c} ←↩ {not b}〉 according to the rule Q1 and A1 attacks A6 = 〈{c, a} ←↩
{not b}〉 according to the rule Q4.

Remind that according to Definition 17 a derivation can be blocked only by a complete argumentation
structure and an argumentation structure is blocked iff each its derivation is blocked. Consequently, the
complete argumentation structure A6 is not blocked by another complete argumentation structure (there is
no such structure) and, consequently, it is the preferred argumentation structure.

We distinguish between attacking and blocking. A blocked argumentation structure is attacked by a
complete argumentation structure. Preferred argumentation structures are not blocked. 2

Next example explains asymmetries between Q1, Q2 and Q3, Q4. The main idea is as follows. We are
more cautious when an attacking argumentation structure is derived (Q2, Q3) and we require that a “parent”
of the attacking argumentation structure is not attacked at all. On the other hand, a scheme of derivation
rules Q1 and Q4 is as follows:A1 attacksA2,A is a derived argumentation structure from the attackedA2

and an argumentation structure A3. In order to derive an attack of A1 against A it is sufficient to assume
that A3 does not attack A1. However, there are some problems with this design decision.



Example 22 Consider a program P :
r1 a1 ← not a3,not d2
r2 d1 ← not a3,not d2
r3 a2 ← not a1,not d3
r4 d2 ← not a1,not d3
r5 a3 ← not a2,not d1
r6 d3 ← not a2,not d1

≺= {(r1, r4), (r3, r5), (r6, r2)}.
Notice that a complete argumentation structure B1 = 〈{a1, d1} ←↩ {not a3,not d2}〉 is derived from

A1 corresponding to r1 and from A2 corresponding to r2, similarly B2 = 〈{a2, d2} ←↩ {not a1,not d3}〉
is derived from A3 corresponding to r3 and from A4 corresponding to r4 and B3 = 〈{a3, d3} ←↩
{not a2,not d1}〉 is derived from A5 corresponding to r5 and from A6 corresponding to r6. B1,B2,B3
are all complete argumentation structures of our example.

Suppose that Q3 does not contain condition that a “parent” of the attacking argumentation structure is
not attacked at all. Then we get that each complete argumentation structure is blocked, consequently, no
preferred answer set can be selected. But we are extremely interested in a selection of a preferred answer
set.

As a consequence, we are too liberal in selecting preferred answer sets: Consider program
r1 a←
r2 b← not a
r3 c← not b
r4 b← not c

≺= {(r2, r3), (r3, r4)}.
We get that both S1 = {a, c} and S2 = {a, b} are preferred answer sets, but S2 is not an intuitive se-

lection. The reason is that both argumentation structures (let us denote them by A1 and A2) corresponding
to S1 and S2, respectively, are attacked and rule Q3 cannot be applied. Hence, each derivation of A1 and
A2 is warranted. A weaker version of Q3 would enable to repair this, however, it is a too high price for us.
2

Theorem 23 If S is a preferred answer set of (P,≺,N ), then S is an answer set of P .

6 Principles

The principles (partially) specify what it means that an order on answer sets corresponds to the given
order on rules. The first two principles below are dependent on [1]. Principle III reproduces an idea of
Proposition 6.1 from [1]. The Principles of [1] are originally expressed in an abstract way for the general
case of nonmonotonic prioritized defeasible rules. We restrict the discussion (and the wording) of the
Principles to the case of logic programs and answer sets.

Let P be a program and r1, r2 ∈ P . It is said that r2 is attacked by r1 (r1 attacks r2) iff not head(r1) ∈
(body(r2 ))

−.

Definition 24 Let a prioritized logic program (P,≺,N ) be given. Let R1, R2 be sets of generating rules
for some answer sets of P . It is said that R1 attacks R2 iff there is r1 ∈ R1, r2 ∈ R2 such that r2 ≺ r1 and
r1 attacks r2.

Definition 25 Let a prioritized logic program (P,≺,N ) be given. Let R be a set of generating rules of
some answer set of P . It is said that R is a warranted set of generating rules iff there is no set Q of
generating rules of some answer set of P such that Q attacks R . 2

Principle I in its original formulation does not hold for our approach. A terminological remark – words
associated to our approach (attack, warranted) are used in presented formulations of Principles. But remind
definitions 24 and 25 – the notions are defined for generating sets of rules independently on our approach.
We have considered the same principles also in another approach, see [14] and also [13]. It is defined
directly on generating sets, and uses neither argumentation structures nor derivation rules.



In all principles below it is assumed that a prioritized logic program (P,≺,N ) is given.6

Principle I Let A1 and A2 be two answer sets of the program P . Let R ⊂ P be a set of rules and
d1, d2 ∈ P \ R are rules. Let A+

1 , A
+
2 be generated by the rules R ∪ {d1} and R ∪ {d2}, respectively. If

d1 is preferred over d2 and each set of generating rules of A+
2 is attacked by a warranted set of generating

rules of some answer set of P , then A2 is not a preferred answer set of (P,≺,N ). 2
Our formulation of Principle I differs from the original formulation in [1] – the condition “each set of

generating rules ofA+
2 is attacked by a warranted set of generating rules of some answer set of P ” is added

because of the credulous stance to warranted derivations accepted in this paper
We do not accept the following principle. See discussion below.
Principle II Let A be a preferred answer set of a prioritized logic program (P,≺,N ) and r be a rule

such that (body(r))+ 6⊆ A+. Then A is a preferred answer set of (P ∪ {r},≺′,N ′), whenever ≺′ agrees
with ≺ on rules in P and N ′ extends N with the name r. 2

We believe that the possibility to always select a preferred answer set from a non-empty set of standard
answer sets is of critical importance.

Principle III Let B 6= ∅ be the set of all answer sets of P . Then there is a selection function Σ s.t.
Σ(B) is the set of all preferred answer sets of (P,≺,N ), where ∅ 6= Σ(B) ⊆ B. 2

It is shown in [1], Proposition 6.1, that Principle II is incompatible with Principle III, if the notion of
preferred answer set from [1] is accepted:

Example 26 ([1]) Consider program P , whose single standard answer set is S = {b} and the rule (1) is
preferred over the rule (2).

c← not b (1)
b← not a (2)

S is not a preferred answer set in the framework of [1]. Assume that S, the only standard answer set of P , is
selected – according to the Principle III – as the preferred answer set of (P,≺,N ).7 Let P ′ be P ∪{a← c}
and a ← c be preferred over the both rules 1 and 2. P ′ has two standard answer sets, S and T = {a, c}.
Note that {c} 6⊆ S+. Hence, S should be the preferred answer set of P ′ according to the Principle II.
However, in the framework of [1] the only preferred answer set of (P ′,≺′,N ′) is T . This selection of
preferred answer set satisfies clear intuitions – T is generated by the two most preferred rules.

In our approach the complete argumentation structure A4 = 〈{a, c} ←↩ {not b}〉 blocks the complete
argumentation structure A5 = 〈{b} ←↩ {not a,not c}〉, hence, A4 is preferred and {a, c} is the preferred
answer set.

Principle III is of crucial value according to our view. A more detailed justification of our decision not
to accept Principle II is presented in [11]. We mention here only that we select preferred answer sets of P ′

from a broader variety of possibilities. Consequently, no condition satisfied by a subset of those possibilities
should constrain the selection of preferred answer set from the extended set of possibilities. 2

Principle II is not accepted also in [8]. According to [4] descriptive approaches do not satisfy this principle
in general.

Principle IV expresses when an answer set is a preferred one. We consider it as an expression of a
descriptive approach to preferred answer set specification, as we understand it and accept in this paper.

Principle IV Let S be answer set of P . Suppose that S is generated by a set of rules R. If R is a
warranted set of generating rules then S is a preferred answer set. 2

6 The original formulation of principles by [1] is as follows.
Principle I. Let B1 and B2 be two belief sets of a prioritized theory (T ;≺) generated by the (ground) rules R∪d1

and R∪ d2, where d1, d2 6∈ R, respectively. If d1 is preferred over d2, then B2 is not a (maximally) preferred belief
set of T .

Principle II. Let B be a preferred belief set of a prioritized theory (T ;≺) and r a (ground) rule such that at least
one prerequisite of r is not in B. Then B is a preferred belief set of (T ∪ {r};≺′) whenever ≺′ agrees with ≺ on
priorities among rules in T .

7 Observe that the only derived complete argumentation structure is 〈{b} ←↩ {not a,not c}〉. Hence, {b} is a
preferred answer set of (P,≺,N ) in our framework.



As regards a choice of principles, we accept the position of [1]: even if somebody does not accept a
set of principles for preferential reasoning, those (and similar) principles are still of interest as they may be
used for classifying different patterns of reasoning.

7 Discussion

The question whether derivation rules for attacks are sufficient and necessary arises in a natural way. Our
only response to the question in this paper is that Principles I, III, IV are satisfied, when we use notions
of attack, blocking and warranting introduced in this paper We proceed to theorems about satisfaction of
principles.

Theorem 27 Principle III is satisfied. Let P = (P,≺,N ) be a prioritized logic program and AS (P ) 6= ∅.
Then there is a preferred answer set of P .

Proof. Case 1 is trivial – if a program P have only one answer set S, then no complete argumentation
structure blocks 〈S+ ←↩ S−〉.

Case 2. Let a program P has only two answer sets S1 and S2. Let the corresponding complete argu-
mentation structures be A1 = 〈S+

1 ←↩ S
−
1 〉 and A2 = 〈S+

2 ←↩ S
−
2 〉, respectively. Suppose that A1 and A2

block each other.
It means that each derivation of both is blocked by the other complete argumentation structure. Consider

all derivations of A1 (which should be blocked by A2). Hence, each derivation σi contains an argumenta-
tion structure Bi attacked by A2, i.e., X = (A2,Bi) is an attack. Each derivation of X should start from a
basic attack and ends with (A2, Bi).

If X is a basic attack, then the only generating set of rules of S2 contains only one rule r = S+
2 ← S−2 ,

where S+ = {head(r)}. We assume that there is a rule r1 s.t. r1 ≺ r and not head(r) ∈ (body(r1 ))
−.

On the other hand,A1 blocksA2 and there is an r2 ∈ P which is among the generating rules of S1, r ≺ r2
and not head(r2) ∈ (body(r))−.

Notice that 〈head(r2) ←↩ (body(r2 ))−; (body(r2 ))+〉 attacks A2. If (body(r2 ))+ 6= ∅, then a deriva-
tion of attack (A2,A1) has to use Q1 and 〈head(r2) ←↩ (body(r2 ))−; (body(r2 ))+〉. But Q1 is not appli-
cable – attacking argumentation structure should be not attacked. Similarly, if (body(r2 ))+ = ∅, Q4 should
be used, but Q4 is not applicable because of the same reason.

Assume that X is not a basic attack. Then there is a basic attack as follows.
Let beR1 = 〈head(r1)←↩ (body(r1 ))−; (body(r1 ))+〉,
R2 = 〈head(r2)←↩ (body(r2 ))−; (body(r2 ))+〉, where
head(r2) ∈ S2, head(r1) ∈ S1, r1 ≺ r2,not head(r2) ∈ (body(r1 ))

− and, consequently, (R2,R1) is a
basic attack.

We will prove that if each derivation of A2 is blocked by A1, then it is impossible to derive the attack
(A2,A1).

Let the basic attack (R2,R1) be given. A derivation of (A2,A1) from the basic attack should contain
rules Q2 or Q3 or Q4 or Q5 in order to proceed from R2 to A2 (X is not a basic attack). A derivation of
A2 using R1, R2, R3 could be reconstructed from this. The derivation is blocked. Therefore, Q2, Q3, Q4
and Q5 are not applicable and the derivation of (A2,A1) is impossible.

Case 3. Let be AS (P ) = {S1, . . . , Sk}, k ≥ 3. Assume that the corresponding complete argumentation
structures are Ai, i = 1, . . . , k. Suppose that each of them is blocked. Let us denote the set {Ai | i =
1, . . . , k} by O.

Suppose that the setN ⊆ O contains only blocked, but not blocking complete argumentation structures
(each A ∈ N is blocked and not blocking). If O \N contains only basic argumentation structures then the
preference relation ≺ is cyclic. Let M ⊆ O be the set of complete argumentation structures which block
an argumentation structure and they are not basic argumentation structures.

We will show that there is A ∈M which is not blocked.
We assumed to the contrary that each complete argumentation structure in M is blocked (and blocking

simultaneously). If the cardinality of M is 2, Case 2 applies.



Let A1 be in M , i.e., A1 is a not basic argumentation structure. Assume (without loss of generality)
that each derivation of A1 is blocked and A1 blocks a derivation of A3. We have to show that an attack
(A1,A3) is not derivable.

Consider a derivation of the attack (A1,A3) and reconstruct the corresponding derivation of A1. Sup-
pose that A2 (again without loss of generality) blocks this derivation of A1.

Hence, A2 attacks an argumentation structure B in the derivation of A1. It follows that some argu-
mentation structure in a derivation of A2 attacks a basic argumentation structure in the derivation of A1.
Consequently, neither rules Q1 and Q4, nor rules Q2 and Q3 are applicable in a derivation of the attack
(A1,A3). Therefore, it is not derivable.

Let R ∈ R be attacked by a warranted set Q of generating rules for some answer set of P . Since
Q is warranted, there is a warranted derivation of complete argumentation structure B corresponding to
Q. There is also a derivation of complete argumentation structure A corresponding to R. Q attacks R, so
there is a basic argumentation structure C from the derivation of A attacked by D from derivation of B.
Q is warranted, rules Q2 and Q3 are applicable and hence attack (D, C) is propagated to attack (B, C). It
follows that derivation of A is blocked.

Theorem 28 Principle I is satisfied. Let P = (P,≺,N ) be a prioritized logic program, A1 and A2 be two
answer sets of P . Let R ⊂ P be a set of rules and d1, d2 ∈ P \ R are rules, d1 is preferred over d2. Let
A+

1 , A
+
2 be generated by the rules R∪{d1} and R∪{d2}, respectively. Assume that each set of generating

rules of A+
2 is attacked by a warranted set of generating rules of some answer set of P .

Then A2 is not a preferred answer set of (P,≺,N ).

Proof. It is assumed that each set of generating rules of A2 is attacked by a warranted set of generating
rules of some answer set of P. A2 is not a preferred answer set of (P,≺,N ).

Theorem 29 Principle IV is satisfied. Let P = (P,≺,N ) be a prioritized logic program and S be an
answer set of P . Suppose that S is generated by a warranted set of rules R.

Then S is a preferred answer set.

Proof. Let R be a set of rules generating an answer set S. If R is a warranted set of generating rules, then
there is a derivation of the argumentation structure 〈S+ ←↩ S−〉 which is warranted.

8 Conclusions

An argumentation framework has been constructed, which enables transferring attacks of rules to attacks of
argumentation structures and, consequently, to warranted complete argumentation structures. Preferred an-
swer sets correspond to warranted complete argumentation structures. This construction enables a selection
of a preferred answer set whenever there is a non-empty set of standard answer sets of a program.

We did not accept the second principle from [1] and we needed to modify their first principle. On the
other hand, new principles, which reflect the role of blocking, have been proposed. We stress the role of
blocking – in our approach, rules can be blocked by more preferred rules, but the rules which are not
blocked are handled in a declarative style.

Among goals for our future research are first of all a thorough analysis of properties and weaknesses of
the presented approach (supported by an implementation of the derivation rules) and a detailed comparison
to other approaches.

Finally, we have to mention the main differences between the preliminary version [11] and this paper.
A more subtle set of attack derivation rules is introduced. A new assumption in Q3 (A3 is not attacked)
changed the set of attacked derivations and, consequently, our semantics. A new and more adequate notion
of warranted and blocked argumentation structure is introduced, which is based on new concepts of war-
ranted and blocked derivations. Consequently, the notion of preferred answer set is changed. A connection
of attacks between argumentation structures to different derivations of argumentation structures was not
expressed in [11]. More precise and appropriate formulations of Principles IV and I are presented.
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12. J. Šefránek and A. Šimko. Warranted derivation of preferred answer sets,

http://kedrigern.dcs.fmph.uniba.sk/reports/. Technical Report TR-2011-027, Comenius University, Faculty
of Mathematics, Physics, ans Informatics, 2011.
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